試卷征集
加入會(huì)員
操作視頻

如圖,已知直線y=-m(x-4)(m>0)與x軸、y軸分別交于A、B兩點(diǎn),以O(shè)A為直徑作半圓,圓心為C.過(guò)A作x軸的垂線AT,M是線段OB上一動(dòng)點(diǎn)(與O點(diǎn)不重合),過(guò)M點(diǎn)作半圓的切線交直線AT于N,交AB于F,切點(diǎn)為P.連接CN、CM.
(1)證明:∠MCN=90°;
(2)設(shè)OM=x,AN=y,求y關(guān)于x的函數(shù)解析式;
(3)若OM=1,當(dāng)m為何值時(shí),直線AB恰好平分梯形OMNA的面積.

【考點(diǎn)】一次函數(shù)綜合題
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:635引用:10難度:0.1
相似題
  • 1.如圖1,兩個(gè)正方形拼接成一個(gè)“L”型的圖形,現(xiàn)用一條直線將圖形分為面積相等的兩部分.小穎在研究時(shí)發(fā)現(xiàn)了三種不同的分割方法,圖2是其中一種方法.
    (1)請(qǐng)?jiān)谙旅鎴D形(圖5)中再畫出另外兩種分割方法;
    (2)若小正方形的邊長(zhǎng)為2,大正方形的邊長(zhǎng)為4.小穎在利用繪圖軟件研究分割方法時(shí),將圖1放置在平面直角坐標(biāo)系中,如圖3所示,此時(shí)圖2所示的分割直線AB的表達(dá)式為y=-
    1
    3
    x+
    4
    3
    .小穎發(fā)現(xiàn):上述三種不同的分割直線都經(jīng)過(guò)同一個(gè)點(diǎn).請(qǐng)你證明此發(fā)現(xiàn);
    (3)小穎繼續(xù)研究,又發(fā)現(xiàn)了一種分割方法,如圖4所示.請(qǐng)根據(jù)此圖,簡(jiǎn)述其作圖思路;
    (4)通過(guò)上述探究過(guò)程,談?wù)勀愕氖斋@.(兩條即可)

    發(fā)布:2025/5/21 13:30:2組卷:144引用:2難度:0.3
  • 2.如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=-x+7分別交x、y軸于A、B兩點(diǎn),直線y=k1x+15分別交x軸、y軸于C、D兩點(diǎn),BD:AC=8:3.
    (1)如圖1,求k1的值;
    (2)如圖2,點(diǎn)Q為線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)Q作PQ⊥x軸,交線段CD于點(diǎn)P,設(shè)點(diǎn)Q的橫坐標(biāo)為t,線段PQ的長(zhǎng)度為d,求d與t之間的函數(shù)解析式(不要求寫出自變量t的取值范圍);
    (3)如圖3,在(2)的條件下,過(guò)點(diǎn)C的直線y=k2x-4交y軸于點(diǎn)E,點(diǎn)P關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)F,G為線段AB延長(zhǎng)線上一點(diǎn),
    BG
    =
    2
    2
    ,連接GF并延長(zhǎng)交x軸于點(diǎn)H,交線段CE于點(diǎn)M,N為線段BA延長(zhǎng)線上一點(diǎn),連接FN,F(xiàn)N=2MF,∠MHC-∠BNF=45°,求點(diǎn)N的坐標(biāo).
    ?

    發(fā)布:2025/5/21 21:0:1組卷:249引用:1難度:0.1
  • 3.在平面直角坐標(biāo)系xOy中,直線y=kx(k≠0)在x軸及其上方的部分記為射線l.對(duì)于定點(diǎn)A(2
    3
    ,0)和直線y=kx(k≠0),給出如下定義:同時(shí)將射線AO和直線y=kx分別繞點(diǎn)A和原點(diǎn)O順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到l1和l2,l1與l2的交點(diǎn)為點(diǎn)P,我們稱點(diǎn)P為射線l的“k-α”雙旋點(diǎn).如圖,點(diǎn)P為y=2x的“2-30°”雙旋點(diǎn).

    (1)若
    k
    =
    -
    3

    ①在給定的平面直角坐標(biāo)系xOy中,畫出“k-90°”的雙旋點(diǎn)P1;
    ②直接寫出α=30°的雙旋點(diǎn)P2的坐標(biāo)
    ;
    ③點(diǎn)P1(1,1)、P2
    3
    ,3)、P3(0,2)是y=kx的“
    -
    3
    -
    α
    ”雙旋點(diǎn)的是
    ;
    (2)直線y=-2x+4分別交x軸、y軸于點(diǎn)M、N,若存在α,使直線y=kx的“k-α”雙旋點(diǎn)在線段MN上,求k的取值范圍;
    (3)當(dāng)
    -
    3
    k
    -
    3
    2
    時(shí),對(duì)于任意的α,若存在某個(gè)三角形上的所有點(diǎn)都是射線y=kx的“k-α”雙旋點(diǎn),直接寫出這個(gè)三角形面積的最大值.

    發(fā)布:2025/5/21 13:0:1組卷:409引用:1難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正