定義:當點P在線段AB上,AP=mAB時,我們稱m為點P在線段AB上的“分值”,記作kP-AB=m.
理解:如點P是AB的中點時,即,則AP=12AB,則kP-AB=12;反過來,當kP-AB=12時,則有AP=12AB.因此我們可以這樣理解:”kP-AB=m”與”AP=mAB”具有相同的含義.
應用:(1)如圖1,點P在線段AB上.若kP-AB=25,則AP=2525AB;若AP=4BP,則kP-AB=4545.
(2)已知線段AB=27cm,點P,Q分別從點A、B同時出發(fā),相向運動,點P到達點B時,P,Q都停止運動,設運動時間為t s.
①若點P,Q的運動速度均為1cm/s,試用含t的式子表示kP-AB和kQ-AB,并判斷它們的數(shù)量關系;
②若點P和點Q的運動速度分別為3cm/s和5cm/s,點Q到達點A后立即以原速返回B,t為何值時,kP-AB+kQ-AB=79.
拓展:(3)如圖2,在三角形ABC中,AB=AC=12,BC=6,點P,Q同時從點A出發(fā),點P沿線段AB勻速運動至點B.點Q沿線段AC,CB勻速運動至點B,且點P,Q同時到達點B,設kP-AB=m.當點Q運動到線段CB上時,請用含m的式子圖2表示kQ-CB.

1
2
1
2
1
2
1
2
2
5
2
5
2
5
4
5
4
5
7
9
【考點】三角形綜合題.
【答案】;
2
5
4
5
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:619引用:2難度:0.4
相似題
-
1.在等邊三角形ABC中,AB=9cm,點P從點C出發(fā)沿CB邊向點B以2cm/s的速度移動,點Q從點B出發(fā)沿BA邊向點A以5cm/s的速度移動,P、Q兩點同時出發(fā),它們移動的時間為ts.
(1)用t分別表示BP及BQ的長度,BP=
(2)經(jīng)過幾秒鐘后,△PBQ為等邊三角形?
(3)若P、Q兩點分別從C、B兩點同時出發(fā),并且都按順時針方向沿△ABC三邊運動,請問經(jīng)過幾秒鐘后點P與點Q第一次在△ABC的哪條邊上相遇?發(fā)布:2025/6/4 9:0:1組卷:766引用:11難度:0.3 -
2.在平面直角坐標系中,點A(m,0),B(0,n),C(-2m,2n-1),且m,n滿足
.(m-2)2+4-n=0
(1)請直接寫出點A,B,C的坐標;
(2)如圖1,平移線段AB至DC,點B的對應點是點C,求直線BD與x軸的交點P的坐標;
(3)如圖2,點Q是x軸負半軸上一點,當BQ把四邊形ABCQ的面積分為5:4的兩部分時,求點Q的坐標.發(fā)布:2025/6/4 8:0:1組卷:120引用:2難度:0.3 -
3.如圖1,在正方形ABCD中,點E是邊BC延長線上一點,連接DE,過點B作BF⊥DE,垂足為F,BF與邊CD相交于點G.
(1)求證:CG=CE;
(2)連接CF,求證:∠BFC=45°;
(3)如圖2,若點G是邊DC的中點,求的值.DFEF?
發(fā)布:2025/6/4 8:0:1組卷:266引用:1難度:0.9