已知,如圖1,四邊形ABCD是正方形,E、F分別在邊BC、CD上,且∠EAF=45°,我們把這種模型稱為“半角模型”,在解決“半角模型”問題時(shí),旋轉(zhuǎn)是一種常用的方法.
(1)在圖1中,連接EF,為了證明結(jié)論“EF=BE+DF”,小明將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后解答了這個(gè)問題,請按小明的思路寫出證明過程;
(2)如圖2,當(dāng)∠EAF的兩邊分別與CB、DC的延長線交于點(diǎn)E、F,連接EF,試探究線段EF、BE、DF之間的數(shù)量關(guān)系,并證明.
【考點(diǎn)】正方形的性質(zhì);全等三角形的判定與性質(zhì).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2082引用:3難度:0.3
相似題
-
1.如圖,已知正方形ABCD的邊長為6,點(diǎn)E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點(diǎn)H,點(diǎn)G為DE的中點(diǎn),連接GH,則GH的長為( )
A. 13B. 15C.4.5 D.4.3 發(fā)布:2024/12/23 20:0:2組卷:861引用:5難度:0.3 -
2.閱讀下面的例題及點(diǎn)撥,并解決問題:
如圖①,在等邊△ABC中,M是BC邊上一點(diǎn)(不含端點(diǎn)B,C),N是△ABC的外角∠ACH的平分線上一點(diǎn),且AM=MN.求證:∠AMN=60°.
(1)點(diǎn)撥:如圖②,作∠CBE=60°,BE與NC的延長線相交于點(diǎn)E,得等邊△BEC,連接EM.易證:△ABM≌△EBM(SAS),請完成剩余證明過程:
(2)拓展:如圖③,在正方形A1B1C1D1中,M1是B1C1邊上一點(diǎn)(不含端點(diǎn)B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分線上一點(diǎn),且A1M1=M1N1.求證:∠A1M1N1=90°.發(fā)布:2024/12/23 19:0:2組卷:1628引用:6難度:0.1 -
3.如圖,在正方形ABCD中,AB=3,點(diǎn)EF分別在CD,AD上,CE=DF,BE,CF相交于點(diǎn)G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則△BCG的周長為( ?。?/h2>
A.7 B.3+ 13C.8 D.3+ 15發(fā)布:2024/12/23 19:0:2組卷:1409引用:14難度:0.8
把好題分享給你的好友吧~~