2021年新冠肺炎疫情仍在世界好多國家肆虐,并且出現(xiàn)了傳染性更強(qiáng)的“德爾塔”、“拉姆達(dá)”、“奧密克戎”變異毒株,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個(gè)國際環(huán)境的影響,時(shí)而也會(huì)出現(xiàn)一些散發(fā)病例,故而抗疫形勢依然艱巨,日常防護(hù)依然不能有絲毫放松.某科研機(jī)構(gòu)對某變異毒株在一特定環(huán)境下進(jìn)行觀測,每隔單位時(shí)間T進(jìn)行一次記錄,用x表示經(jīng)過單位時(shí)間的個(gè)數(shù),用y表示此變異毒株的數(shù)量,單位為萬個(gè),得到如下觀測數(shù)據(jù):
x(T) | 1 | 2 | 3 | 4 | 5 | 6 | … |
y(萬個(gè)) | … | 10 | … | 50 | … | 250 | … |
(參考數(shù)據(jù):
5
≈
2
.
236
6
≈
2
.
449
(1)判斷哪個(gè)函數(shù)模型更合適,并求出該模型的解析式;
(2)求至少經(jīng)過多少個(gè)單位時(shí)間該病毒的數(shù)量不少于1億個(gè).
【考點(diǎn)】根據(jù)實(shí)際問題選擇函數(shù)類型.
【答案】(1)函數(shù)y=kax(k>0,a>1)更合適,解析式為y=.(2)11.
2
?
(
5
)
x
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:107引用:6難度:0.5
相似題
-
1.隨著科學(xué)技術(shù)的發(fā)展,放射性同位素技術(shù)已經(jīng)廣泛應(yīng)用于醫(yī)學(xué)、航天等眾多領(lǐng)域,并取得了顯著經(jīng)濟(jì)效益.假設(shè)某放射性同位素的衰變過程中,其含量P(單位:貝克)與時(shí)間t(單位:天)滿足函數(shù)關(guān)系P(t)=
,其中P0為t=0時(shí)該放射性同位素的含量.已知t=15時(shí),該放射性同位素的瞬時(shí)變化率為P02-t30,則該放射性同位素含量為4.5貝克時(shí),衰變所需時(shí)間為( ?。?/h2>-32ln210發(fā)布:2024/12/29 13:30:1組卷:157引用:11難度:0.7 -
2.隨著“低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為福清人喜愛的交通工具.據(jù)預(yù)測,福清某新能源汽車4S店從2023年1月份起的前x個(gè)月,顧客對比亞迪汽車的總需量R(x)(單位:輛)與x的關(guān)系會(huì)近似地滿足
(其中x∈N*且x≤6),該款汽車第x月的進(jìn)貨單價(jià)W(x)(單位:元)與x的近似關(guān)系是W(x)=150000+2000x.R(x)=12x(x+1)(39-2x)
(1)由前x個(gè)月的總需量R(x),求出第x月的需求量g(x)(單位:輛)與x的函數(shù)關(guān)系式;
(2)該款汽車每輛的售價(jià)為185000元,若不計(jì)其他費(fèi)用,則這個(gè)汽車4S店在2023年的第幾個(gè)月的月利潤f(x)最大,最大月利潤為多少元?發(fā)布:2024/12/29 11:30:2組卷:24引用:3難度:0.5 -
3.某工廠生產(chǎn)某種零件的固定成本為20000元,每生產(chǎn)一個(gè)零件要增加投入100元,已知總收入Q(單位:元)關(guān)于產(chǎn)量x(單位:個(gè))滿足函數(shù):Q=
.400x-12x2,0≤x≤40080000,x>400
(1)將利潤P(單位:元)表示為產(chǎn)量x的函數(shù);(總收入=總成本+利潤)
(2)當(dāng)產(chǎn)量為何值時(shí),零件的單位利潤最大?最大單位利潤是多少元?(單位利潤=利潤÷產(chǎn)量)發(fā)布:2024/12/29 13:0:1組卷:234引用:12難度:0.5
相關(guān)試卷