菁于教,優(yōu)于學(xué)
旗下產(chǎn)品
校本題庫(kù)
菁優(yōu)備課
開(kāi)放平臺(tái)
菁優(yōu)測(cè)評(píng)
菁優(yōu)公式
小優(yōu)同學(xué)
菁優(yōu)App
數(shù)字備考
充值服務(wù)
試卷征集
申請(qǐng)校本題庫(kù)
智能組卷
錯(cuò)題庫(kù)
五大核心功能
組卷功能
資源共享
在線作業(yè)
在線測(cè)評(píng)
試卷加工
游客模式
登錄
試題
試題
試卷
課件
試卷征集
加入會(huì)員
操作視頻
初中數(shù)學(xué)
小學(xué)
數(shù)學(xué)
語(yǔ)文
英語(yǔ)
奧數(shù)
科學(xué)
道德與法治
初中
數(shù)學(xué)
物理
化學(xué)
生物
地理
語(yǔ)文
英語(yǔ)
道德與法治
歷史
科學(xué)
信息技術(shù)
高中
數(shù)學(xué)
物理
化學(xué)
生物
地理
語(yǔ)文
英語(yǔ)
政治
歷史
信息
通用
中職
數(shù)學(xué)
語(yǔ)文
英語(yǔ)
推薦
章節(jié)挑題
知識(shí)點(diǎn)挑題
智能挑題
收藏挑題
試卷中心
匯編專輯
細(xì)目表組卷
組卷圈
當(dāng)前位置:
2022-2023學(xué)年四川省成都市青羊區(qū)石室聯(lián)中八年級(jí)(下)期末數(shù)學(xué)模擬試卷(四)
>
試題詳情
定義:在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn)P(a,b),Q(c,d),若點(diǎn)T(x,y)滿足
x
=
a
+
c
3
,
y
=
b
+
d
3
,那么稱點(diǎn)T是點(diǎn)P,Q的“芙蓉點(diǎn)”.
例如:P(-2,8),Q(5,4),當(dāng)點(diǎn)T(x,y)滿足:
x
=
-
2
+
5
3
=
1
,
y
=
8
+
4
3
=
4
,則點(diǎn)T(1,4)是點(diǎn)P,Q的“芙蓉點(diǎn)”.
(1)已知點(diǎn)P(8,3),Q(-2,-12),點(diǎn)T是點(diǎn)P,Q的“芙蓉點(diǎn)”,則點(diǎn)T的坐標(biāo)為
(2,-3)
(2,-3)
;
(2)如圖,點(diǎn)P為(-3,0),點(diǎn)Q(t,2t-3)是直線l上任意一點(diǎn),點(diǎn)T(x,y)是點(diǎn)P,Q的“芙蓉點(diǎn)”.
①試確定y與x的關(guān)系式;
②若①中的函數(shù)圖象交y軸于點(diǎn)M,直線l交y軸于點(diǎn)N,當(dāng)以M,N,Q,T為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)Q的坐標(biāo);
③若直線PT與線段MN有交點(diǎn),直接寫(xiě)出t的取值范圍.
【考點(diǎn)】
四邊形綜合題
.
【答案】
(2,-3)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
當(dāng)前模式為游客模式,
立即登錄
查看試卷全部?jī)?nèi)容及下載
發(fā)布:2024/6/27 10:35:59
組卷:776
引用:3
難度:0.1
相似題
1.
有這樣一個(gè)問(wèn)題:如圖,在四邊形ABCD中,AB=AD,CB=CD,我們把這種兩組鄰邊分別相等的四邊形叫做箏形,請(qǐng)?zhí)骄抗~形的性質(zhì)和判定方法.
小南根據(jù)學(xué)習(xí)四邊形的經(jīng)驗(yàn),對(duì)箏形的性質(zhì)和判定方法進(jìn)行了探究.
下面是小南的探究過(guò)程:
(1)由箏形的定義可知,箏形的邊的性質(zhì)時(shí):箏形的兩組鄰邊分別相等,關(guān)于箏形的角的性質(zhì),通過(guò)測(cè)量,折紙的方法,猜想:箏形有一組對(duì)角相等.
請(qǐng)將下面證明此猜想的過(guò)程補(bǔ)充完整:
已知:如圖,在箏形ABCD中,AB=AD,CB=CD.
求證:
.
由以上證明可得,箏形的角的性質(zhì)是:箏形有一組對(duì)角相等.
(2)連接箏形的兩條對(duì)角線,探究發(fā)現(xiàn)箏形的另一條性質(zhì):箏形的一條對(duì)角線平分另一條對(duì)角線,結(jié)合圖形,寫(xiě)出箏形的其他性質(zhì)(一條即可):
(3)箏形的定義是判定一個(gè)四邊形為箏形的方法之一,試判斷命題“一組對(duì)角相等,一條對(duì)角線平分另一條對(duì)角線的四邊形是”是否成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)舉出一個(gè)反例,畫(huà)出圖形,并加以證明.
發(fā)布:2024/11/7 8:0:2
組卷:134
引用:1
難度:0.1
解析
2.
如圖,四邊形ABCD中,AD=CD,AB=CB.我們把這種兩組鄰邊分別相等的凸四邊形叫做箏形.AC,BD叫做箏形的對(duì)角線.請(qǐng)你通過(guò)觀察、測(cè)量、折紙等方法進(jìn)行探究,并回答以下問(wèn)題:
(1)判斷下列結(jié)論是否正確;
a.∠DAB=∠DCB;
b.∠ABC=∠ADC;
c.BD分別平分∠ABC和∠ADC
d.箏形是軸對(duì)稱圖形,它有兩條對(duì)稱軸.
(2)請(qǐng)你選擇下列問(wèn)題中的一個(gè)進(jìn)行證明:
a.從(1)中選擇一個(gè)正確的結(jié)論進(jìn)行證明;
b.通過(guò)探究,再找到一條箏形的性質(zhì),并進(jìn)行證明.
發(fā)布:2024/11/7 8:0:2
組卷:108
引用:2
難度:0.3
解析
3.
從圖1的風(fēng)箏圖形可以抽象出幾何圖形,我們把這種幾何圖形叫做“箏形”.具體定義如下:如圖2,在四邊形ABCD中,AB=AD,BC=DC,我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”.
(1)結(jié)合圖3,通過(guò)觀察、測(cè)量,可以猜想“箏形”具有諸如“AC平分∠BAD和∠BCD”這樣的性質(zhì),請(qǐng)結(jié)合圖形,再寫(xiě)出兩條“箏形”的性質(zhì):
①
;
②
.
(2)從你寫(xiě)出的兩條性質(zhì)中,任選一條“箏形”的性質(zhì)給出證明.
發(fā)布:2024/11/7 8:0:2
組卷:220
引用:7
難度:0.5
解析
把好題分享給你的好友吧~~
商務(wù)合作
服務(wù)條款
走進(jìn)菁優(yōu)
幫助中心
兼職招聘
意見(jiàn)反饋
深圳市菁優(yōu)智慧教育股份有限公司
粵ICP備10006842號(hào)
公網(wǎng)安備44030502001846號(hào)
?2010-2024 jyeoo.com 版權(quán)所有
深圳市市場(chǎng)監(jiān)管
主體身份認(rèn)證
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2 |
隱私協(xié)議
第三方SDK
用戶服務(wù)條款
廣播電視節(jié)目制作經(jīng)營(yíng)許可證
出版物經(jīng)營(yíng)許可證
網(wǎng)站地圖
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正