如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x
2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),且在直線BC的上方.
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),使△BPC的面積最大,求出點(diǎn)P的坐標(biāo)和△BPC的面積最大值.