AB∥CD,點C在點D的右側(cè),∠ABC,∠ADC的平分線交于點E(不與B,D點重合).∠ABC=n°,∠ADC=80°.
(1)若點B在點A的左側(cè),求∠BED的度數(shù)(用含n的代數(shù)式表示);
(2)將(1)中的線段BC沿DC方向平移,當點B移動到點A右側(cè)時,請畫出圖形并判斷∠BED的度數(shù)是否改變.若改變,請求出∠BED的度數(shù)(用含n的代數(shù)式表示);若不變,請說明理由.
【考點】平行線的判定與性質(zhì).
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2089引用:15難度:0.5
相似題
-
1.如圖,已知AD⊥BC,垂足為點D,EF⊥BC,垂足為點F,∠1+∠2=180°.請?zhí)顚憽螩GD=∠CAB的理由.
∵AD⊥BC,EF⊥BC,
∴∠ADC=90°,∠EFC=90° ( ),
∴∠ADC=∠EFC,
∴AD∥( ),
∴∠+∠2=180°( ),
∵∠1+∠2=180°,
∴∠=∠( ),
∴DG∥( ),
∴∠CGD=∠CAB.發(fā)布:2025/6/8 20:0:1組卷:863引用:12難度:0.5 -
2.如圖,若直線AB∥CD,AE,CF分別是∠MAB和∠MCD的角平分線,求證:AE∥CF.
證明:∵AB∥CD(已知)
∴∠MAB=( ).
∵AE,CF分別是∠MAB和∠MCD的角平分線(已知),
∴=,12∠MAB(角平分線的定義).∠MCF=12
∴∠MAE=(等量代換).
∴AE∥CF ( ).發(fā)布:2025/6/8 20:30:2組卷:160引用:2難度:0.8 -
3.如圖1,直線MN與直線AB,CD分別交于點E,F(xiàn),∠BEM與∠DFN互為補角.
(1)請判斷直線AB與CD的位置關系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線EP與FP交于點P,延長EP與CD交于點G,過點G作GH⊥EG垂足為G,求證:PF∥HG;
(3)在(2)的條件下,連接PH,點K是GH上一點,連接PK,使∠PHK=∠HPK,作∠EPK的平分線PQ交MN于點Q,請畫出圖形.并直接寫出∠HPQ的度數(shù).發(fā)布:2025/6/8 23:30:1組卷:339引用:2難度:0.5