試卷征集
加入會員
操作視頻
已知函數(shù) f(x)=log2(4x+1)-x.
(1)若函數(shù)g(x)=2f(x)+m?2x-1,x∈[0,log23],求函數(shù)g(x)的最小值;
(2)設(shè)h(x)=log2(a?2x+a)(a≠0),若函數(shù)f(x)與h(x)圖象有2個公共點,求實數(shù)a的取值范圍.
【考點】函數(shù)的最值
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:87引用:3難度:0.5
相似題
  • 1.設(shè)函數(shù)
    g
    x
    =
    1
    -
    2
    2
    x
    +
    1

    (1)判斷g(x)的單調(diào)性,并用定義證明你的結(jié)論;
    (2)若函數(shù)h(x)=e2x+mex(其中e=2.71828L)在x∈[0,ln4]的最小值為0,求實數(shù)m的取值范圍.
    發(fā)布:2024/10/24 11:0:1組卷:34引用:1難度:0.5
  • 2.已知函數(shù)f(x)=2|x-1|,g(x)=x2-2ax+4a-2,函數(shù)F(x)=min{f(x),g(x)},其中
    min
    {
    p
    ,
    q
    }
    =
    p
    ,
    p
    q
    q
    ,
    p
    q

    (1)若函數(shù)g(x)在[1,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
    (2)已知a≥3,①求F(x)的最小值m(a);
    ②求F(x)在區(qū)間[0,6]上的最大值M(a).
    發(fā)布:2024/10/24 8:0:1組卷:78引用:3難度:0.3
  • 3.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,f(x)=-x2-2x.
    (1)求函數(shù)f(x)(x∈R)的解析式;
    (2)寫出函數(shù)f(x)(x∈R)的增區(qū)間(不需要證明);
    (3)若函數(shù)g(x)=f(x)-2ax+2(x∈[1,2]),求函數(shù)g(x)的最小值.
    發(fā)布:2024/10/24 8:0:1組卷:7引用:1難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正