試卷征集
加入會(huì)員
操作視頻

在面積為S的正三角形ABC中,E是邊AB上的動(dòng)點(diǎn),過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到離邊BC的距離為△ABC高的
1
2
時(shí),△EFB的面積取得最大值為
1
4
S
.類(lèi)比上面的結(jié)論,可得,在各棱條相等的體積為V的四面體ABCD中,E是棱AB上的動(dòng)點(diǎn),過(guò)點(diǎn)E作平面EFG∥平面BCD,分別交AC、AD于點(diǎn)F、G,則四面體EFGB的體積的最大值等于
4
27
4
27
V.

【考點(diǎn)】類(lèi)比推理
【答案】
4
27
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:16引用:5難度:0.7
相似題
  • 1.函數(shù)y=tanx滿(mǎn)足tan(x
    +
    π
    4
    )=
    1
    +
    tanx
    1
    -
    tanx
    由該等式也能推證出y=tanx的周期為π,已知函數(shù)y=f(x)滿(mǎn)足f(x+a)=
    1
    +
    f
    x
    1
    -
    f
    x
    ,x∈R.a(chǎn)為非零的常數(shù),根據(jù)上述論述我們可以類(lèi)比出函數(shù)f(x)的周期為

    發(fā)布:2025/1/6 8:0:1組卷:5引用:1難度:0.7
  • 2.已知
    tan
    x
    +
    π
    4
    =
    1
    +
    tanx
    1
    -
    tanx
    x
    +
    π
    4
    ,那么函數(shù)y=tanx的周期為π.類(lèi)比可推出:已知x∈R且
    f
    x
    +
    π
    =
    1
    +
    f
    x
    1
    -
    f
    x
    ,那么函數(shù)y=f(x)的周期是( ?。?/h2>

    發(fā)布:2025/1/6 8:0:1組卷:11引用:1難度:0.7
  • 3.
    x
    +
    π
    4
    ,
    tan
    x
    +
    π
    4
    =
    1
    +
    tanx
    1
    -
    tanx
    ,則y=tanx的周期為π.類(lèi)比可推出:設(shè)x∈R且
    f
    x
    +
    π
    =
    1
    +
    f
    x
    1
    -
    f
    x
    ,則y=f(x)的周期是( ?。?/h2>

    發(fā)布:2025/1/6 8:0:1組卷:36引用:1難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶(hù)服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正