閱讀材料并解決問題.
把幾個圖形拼成一個新的圖形,再通過兩種不同的方式計算同一個圖形的面積,可以得到一個等式,也可以求出一些不規(guī)則圖形的面積.
例如:由圖?可得等式(a+2b)(a+b)=a2+3ab+2b2.
(1)由圖?可得等式 (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.
(2)利用(1)所得等式,解決問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)圖?中給出了邊長分別為a,b的小正方形紙片和長、寬分別為b,a的長方形紙片,現(xiàn)有足量的這三種紙片.
①請你用所給的紙片拼出一個面積為2a2+5ab+2b2的長方形,仿照圖?、圖?畫出拼法并標注a,b;
②研究①中拼圖發(fā)現(xiàn),因式分解2a2+5ab+2b2的結(jié)果為 (a+2b)(2a+b)(a+2b)(2a+b).
【答案】(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a+2b)(2a+b)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:91引用:1難度:0.7
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2517引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:388引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗證67822615是7的倍數(shù)(寫明驗證過程);
(2)若對任意一個七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4
相關(guān)試卷