試卷征集
加入會員
操作視頻

已知橢圓
C
1
x
2
a
2
+
y
2
b
2
=
1
a
b
0
的離心率為
2
2
,且點
-
2
,
2
在橢圓C1上.
(1)求橢圓C1的方程;
(2)過點Q(0,1)的直線l與橢圓C1交于D,E兩點,已知
DQ
=
2
QE
,求直線l的方程;
(3)點P為橢圓C1上任意一點,過點P作C1的切線與圓
C
2
x
2
+
y
2
=
12
交于A,B兩點,設直線OA,OB的斜率分別為k1,k2.證明:k1?k2為定值,并求該定值.

【考點】橢圓與平面向量
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:118引用:1難度:0.4
相似題
  • 1.已知橢圓
    E
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的左頂點、上頂點分別為A,B,離心率為
    3
    2
    ,△OAB(O為坐標原點)的面積為1.
    (1)求橢圓E的方程;
    (2)已知過點C(3,0)的直線l交橢圓E于P,Q兩點(點P,Q不在y軸上),直線BP,BQ分別交x軸于點M,N,若
    MC
    =
    m
    OC
    ,
    NC
    =
    n
    OC
    ,且
    m
    +
    n
    =
    5
    3
    ,求直線l的方程.

    發(fā)布:2024/10/24 16:0:1組卷:55引用:1難度:0.5
  • 2.已知橢圓C:
    x
    2
    4
    +
    y
    2
    3
    =1的左、右頂點分別為A,B,右焦點為F,過點A且斜率為k(k≠0)的直線l交橢圓C于點P.
    (1)若|AP|=
    12
    2
    7
    ,求k的值;
    (2)若圓F是以F為圓心,1為半徑的圓,連接PF,線段PF交圓F于點T,射線AP上存在一點Q,使得
    QT
    ?
    BT
    為定值,證明:點Q在定直線上.

    發(fā)布:2024/10/23 13:0:1組卷:56引用:1難度:0.5
  • 3.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    (其中a>b>0)的上頂點與拋物線x2=4y的焦點重合,且橢圓C的四個頂點所圍成的菱形的面積為4.
    (1)求橢圓C的方程;
    (2)過點T(3,0)的直線l與C相交于A、B兩點,試問曲線C上是否存在一點Q,使得
    OA
    +
    OB
    =
    6
    OQ
    ,若存在,求出點Q的坐標;若不存在,請說明理由.

    發(fā)布:2024/10/23 11:0:2組卷:41引用:1難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正