已知正方形ABCD與正方形CEFG(點(diǎn)C、E、F、G按順時(shí)針排列),M是AF的中點(diǎn),連接DM,EM.
(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線上,
求證:DM=EM,DM⊥EM.
簡(jiǎn)析:由M是AF的中點(diǎn),AD∥EF,不妨延長(zhǎng)EM交AD于點(diǎn)N,從而構(gòu)造出一對(duì)全等的三角形,即△AMN△AMN≌△FME△FME.由全等三角形性質(zhì),易證△DNE是等腰直角等腰直角三角形,進(jìn)而得出結(jié)論.
(2)如圖2,E在DC的延長(zhǎng)線上,點(diǎn)G在BC上,(1)中結(jié)論是否成立?若成立,請(qǐng)證明你的結(jié)論;若不成立,請(qǐng)說明理由.
(3)當(dāng)AB=5,CE=3時(shí),正方形CEFG的頂點(diǎn)C、E、F、G按順時(shí)針排列.若點(diǎn)E在直線CD上,則DM=2或422或42;若點(diǎn)E在直線BC上,則DM=1717.
2
2
2
2
17
17
【考點(diǎn)】四邊形綜合題.
【答案】△AMN;△FME;等腰直角;或4;
2
2
17
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:550引用:5難度:0.3
相似題
-
1.已知:矩形ABCD中,∠MAN的一邊分別與射線DB、射線CB交于點(diǎn)E、M,另一邊分別與射線DB、射線DC交于點(diǎn)F、N,且∠MAN=∠BDA.
(1)若AB=AD,(如圖1)求證:DF=MC.2
(2)(如圖2)若AB=4,AD=8,tan∠BAM=,連接FM并延長(zhǎng)交射線AB于點(diǎn)K,求線段BK的長(zhǎng).14發(fā)布:2025/1/13 8:0:2組卷:16引用:0難度:0.9 -
2.如圖①,矩形ABCD中,AB=12,AD=25,延長(zhǎng)CB至E,使BE=9,連接AE,將△ABE沿AB翻折使點(diǎn)E落在BC上的點(diǎn)F處,連接DF.△ABE從點(diǎn)B出發(fā),沿線段BC以每秒3個(gè)單位的速度平移得到△A′B′E′,當(dāng)點(diǎn)E′到達(dá)點(diǎn)F時(shí),△ABE又從點(diǎn)F開始沿射線FD方向以每秒5個(gè)單位的速度平移,當(dāng)點(diǎn)E′到達(dá)點(diǎn)D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)線段DF的長(zhǎng)度為
(2)在△ABE平移的過程中,記△A′B′E′與△AFD互相重疊部分的面積為S,請(qǐng)直接寫出面積S與運(yùn)動(dòng)時(shí)
間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)如圖②,當(dāng)點(diǎn)E′到達(dá)點(diǎn)F時(shí),△ABE從點(diǎn)F開始沿射線FD方向以每秒5個(gè)單位的速度平移時(shí),設(shè)A′B′
交射線FD于點(diǎn)M,交線段AD于點(diǎn)N,是否存在某一時(shí)刻t,使得△DMN為等腰三角形?若存在,請(qǐng)求出相應(yīng)的t值;若不存在,請(qǐng)說明理由.
發(fā)布:2025/1/13 8:0:2組卷:119引用:1難度:0.1 -
3.在矩形ABCD中,點(diǎn)E在BC上,以AE為邊作?AEFG,使點(diǎn)D在AE的對(duì)邊FG上.
(1)填空:如圖1,連接DE,則△ADE的面積=
并直接寫出?AEFG的面積S1與矩形ABCD的面積S2的數(shù)量關(guān)系;
(2)如圖2,EF與CD交于點(diǎn)P,連接PA.
①若∠F=90°,證明:A、E、P、D四點(diǎn)在同一個(gè)圓上;并直接說明點(diǎn)D、F、C、E是否在同一個(gè)圓上;
(3)如圖3,在①的條件下,若AB<BC,AG=AE,且D是FG的中點(diǎn),EF交CD于點(diǎn)P,試判斷以FG為直徑的圓與直線PA的位置關(guān)系,并說明理由.發(fā)布:2025/1/13 8:0:2組卷:63引用:1難度:0.1
把好題分享給你的好友吧~~