某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價-制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當(dāng)銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?
【考點】二次函數(shù)的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/3 8:30:1組卷:1707引用:43難度:0.3
相似題
-
1.對于豎直向上拋出的物體,在不考慮空氣阻力的情況下,有如下的關(guān)系式:
,其中h是物體上升的高度,v是拋出時的速度,g是重力加速度(g≈10m/s2),t是拋出后的時間.如果一物體以25m/s的初速度從地面豎直向上拋出,經(jīng)過 秒鐘后它在離地面20m高的地方.h=vt-12gt2發(fā)布:2025/6/4 22:0:2組卷:133引用:2難度:0.6 -
2.如圖,一小球M(看作一個點)從斜坡OA上的O點處拋出,球的拋出路線是拋物線的一部分,建立如圖所示的平面直角坐標(biāo)系,斜坡可以用一次函數(shù)y=
x刻畫、若小球到達(dá)的最高的點坐標(biāo)為(4,8),解答下列問題:12
(1)求拋物線的表達(dá)式;
(2)小球落點為A,求A點的坐標(biāo);
(3)在斜坡OA上的B點有一棵樹(樹高看成線段且垂直于x軸),B點的橫坐標(biāo)為2,樹高為4,小球M能否飛過這棵樹?通過計算說明理由.發(fā)布:2025/6/5 0:30:1組卷:1188引用:8難度:0.4 -
3.數(shù)學(xué)活動課上,老師提出一個探究問題:
制作一個體積為10dm3,底面為正方形的長方體包裝盒,當(dāng)?shù)酌孢呴L為多少時,需要的材料最?。ǖ酌孢呴L不超過3dm,且不考慮接縫).
某小組經(jīng)討論得出:材料最省,就是盡可能使得長方體的表面積最?。?br />下面是他們的探究過程,請補充完整:
(1)設(shè)長方體包裝盒的底面邊長為x dm,表面積為y dm2.
可以用含x的代數(shù)式表示長方體的高為.10x2dm
根據(jù)長方體的表面積公式:長方體表面積=2×底面積+側(cè)面積.
得到y(tǒng)與x的關(guān)系式:(0<x≤3);
(2)列出y與x的幾組對應(yīng)值:x/dm … 0.5 1.0 1.5 2.0 2.5 3.0 y/dm2 … 80.5 42.0 31.2 a 28.5 31.3
表中a=.
(3)在圖2的平面直角坐標(biāo)系xOy中,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象:
(4)結(jié)合畫出的函數(shù)圖象,解決問題:
長方體包裝盒的底面邊長約為 dm時,需要的材料最??;當(dāng)長方體包裝盒表面積為30dm2時,底面邊長約為 dm.發(fā)布:2025/6/4 16:0:1組卷:288引用:4難度:0.4