問題情境
在綜合實踐課上,老師組織七年級(2)班的同學(xué)開展了探究兩角之間數(shù)量關(guān)系的數(shù)學(xué)活動,如圖,已知射線AM∥BN,連接AB,點P是射線AM上的一個動點(不與點A重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
?探索發(fā)現(xiàn)
“飛翔小組”經(jīng)過探索后發(fā)現(xiàn):
(1)當(dāng)∠A=60°時,請說明∠CBD=∠A;
(2)不斷改變∠A的度數(shù),∠CBD與∠A卻始終存在某種數(shù)量關(guān)系,當(dāng)∠A=30°,則∠CBD=7575度,當(dāng)∠A=n°時,則∠CBD=(90-12n)(90-12n)度;(用含n的代數(shù)式表示)
操作探究
(3)“超越小組”利用量角器量出∠APB和∠ADB的度數(shù)后,探究二者之間的數(shù)量關(guān)系.他們驚奇地發(fā)現(xiàn),當(dāng)點P在射線AM上運動時,無論點P在AM上的什么位置,∠APB與∠ADB之間的數(shù)量關(guān)系都保持不變,請寫出它們的關(guān)系,并說明理由.
1
2
n
1
2
n
【答案】75;(90-)
1
2
n
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/15 8:0:9組卷:81引用:2難度:0.5
相似題
-
1.如圖,△ABC中,以點B為圓心,任意長為半徑作弧,分別交AB,B于E、F點,分別以點E、F為圓心,以大于
的長為半徑作弧,兩弧交于點G,作射線BG,交AC于點D,過點D作DH∥BC交AB于點H.已知HD=3,BC=7,則AH的長為( ?。?/h2>12EF發(fā)布:2025/5/24 5:30:2組卷:263引用:3難度:0.6 -
2.如圖,是一款手推車的平面示意圖,其中AB∥CD,∠D=25°,則∠A=度.
發(fā)布:2025/5/24 5:0:1組卷:221引用:6難度:0.7 -
3.如圖,直線l1∥l2,點A在直線l1上,以點A為圓心,適當(dāng)長度為半徑畫弧,分別交直線l1,l2于B,C兩點,以點C為圓心,CB長為半徑畫弧,與前弧交于點D(不與點B重合),連接AC,AD,BC,CD,其中AD交l2于點E.若∠ECA=40°,則∠BCD=°.
發(fā)布:2025/5/24 4:30:1組卷:182引用:2難度:0.6