如圖,拋物線y=ax2+94x-4a與x軸交于A(-1,0),B兩點,與y軸交于點C,在直線BC上方的拋物線上有一動點E,過點E作EG⊥x軸于G,EG交直線BC于點F,過點E作ED⊥BC于點D.
(1)求拋物線及直線BC的函數(shù)關系式;
(2)設S△EDF為S1,S△BGF為S2,當S1=8125S2時,求點E的坐標.
(3)在(2)的條件下,在y軸上是否存在點M,使得∠MAB=2∠EAB?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

9
4
81
25
【考點】二次函數(shù)綜合題.
【答案】(1)拋物線的解析式為:y=-x2+x+3,直線BC的解析式為:y=-x+3;
(2)E(3,3);
(3)點M的坐標為(0,)或(0,-).
3
4
9
4
3
4
(2)E(3,3);
(3)點M的坐標為(0,
24
7
24
7
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1935引用:4難度:0.1
相似題
-
1.如圖,在平面直角坐標系中,拋物線y=ax2+bx+3與x軸交于A,B兩點,與y軸交于C點,連接BC.P是直線BC上方拋物線上一動點,連接PA,交BC于點D.其中BC=AB,tan∠ABC=
.34
(1)求拋物線的解析式;
(2)求的最大值;PDDA
(3)若函數(shù)y=ax2+bx+3在(其中m-12≤x≤m+12)范圍內(nèi)的最大值為s,最小值為t,且m≤56≤s-t<12,求m的取值范圍.32發(fā)布:2025/5/24 6:0:2組卷:213引用:1難度:0.1 -
2.如圖,在平面直角坐標系中,拋物線y=x2+bx+c經(jīng)過點A(-1,0),B(
,0),直線y=x+52與拋物線交于C,D兩點,點P是拋物線在第四象限內(nèi)圖象上的一個動點.過點P作PG⊥CD,垂足為G,PQ∥y軸,交x軸于點Q.12
(1)求拋物線的函數(shù)表達式;
(2)當PG+PQ取得最大值時,求點P的坐標和2PG+PQ的最大值;2
(3)將拋物線向右平移個單位得到新拋物線,M為新拋物線對稱軸上的一點,點N是平面內(nèi)一點.當(2)中134PG+PQ最大時,直接寫出所有使得以點A,P,M,N為頂點的四邊形是菱形的點N的坐標,并把求其中一個點N的坐標的過程寫出來.2發(fā)布:2025/5/24 5:0:1組卷:1765引用:4難度:0.3 -
3.如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點,交y軸于C點,P為y軸上的一個動點,已知A(-2,0)、C(0,-2
),且拋物線的對稱軸是直線x=1.3
(1)求此二次函數(shù)的解析式;
(2)連接PB,則PC+PB的最小值是;12
(3)連接PA、PB,P點運動到何處時,使得∠APB=60°,請求出P點坐標.發(fā)布:2025/5/24 5:0:1組卷:1948引用:7難度:0.2