在△ABC中,AB=AC,D是邊BC上一動點,連接AD,將AD繞點A逆時針旋轉(zhuǎn)至AE的位置,使得∠DAE+∠BAC=180°.

(1)如圖1,當∠BAC=90°時,連接EC,連接BE交AC于點F.若BE平分∠ABC,BD=2.
①求證:∠BCE=90°;
②求AF的長.
(2)如圖2,連接BE,取BE的中點G,連接AG.猜想AG與CD存在的數(shù)量關(guān)系,并證明你的猜想.
【考點】幾何變換綜合題.
【答案】(1)①證明過程見解答部分;
②;
(2)AG=CD.證明過程見解答部分.
②
2
(2)AG=
1
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:947引用:4難度:0.2
相似題
-
1.如圖,在△ABC中,∠ABC=90°,AB=4,BC=3.點P從點A出發(fā),沿折線AB-BC以每秒5個單位長度的速度向點C運動,同時點D從點C出發(fā),沿CA以每秒2個單位長度的速度向點A運動,點P到達點C時,點P、D同時停止運動.當點P不與點A,C重合時,作點P關(guān)于直線AC的對稱點Q,連接PQ交AC于點E,連接DP、DQ.設(shè)點P的運動時間為t秒.
(1)當點P與點B重合時,求t的值;
(2)用含t的代數(shù)式表示線段CE的長;
(3)當△PDQ為等腰直角三角形時,求t的值.發(fā)布:2025/5/25 12:30:1組卷:196引用:4難度:0.3 -
2.【問題提出】
(1)如圖①,在矩形ABCD中,點P、Q分別在線段AD、BC上,點B與點E關(guān)于PQ對稱,點E在線段AD,連接BP、EQ、PQ交BE于點O,則四邊形PBQE的形狀是 ;
【問題探究】
(2)如圖②,在矩形ABCD中,AB=3,點P、Q分別在線段AB、BC上,點B與點E關(guān)于PQ對稱,點E在線段AD上,,求PQ的長;AE=5
【問題解決】
(3)如圖③,有一塊矩形空地ABCD,AB=60m,BC=80m,點P是一個休息站且在線段AB上,AP=40m,點Q在線段BC上,現(xiàn)要在點B關(guān)于PQ對稱的點E處修建口水井,并且修建水渠AE和CE,以便于在四邊形空地AECD上種植花草,余下部分貼上地磚.種植花草的四邊形空地AECD的面積是否存在最小值,若存在,請求出最小值,若不存在,請說明理由.發(fā)布:2025/5/25 13:0:1組卷:154引用:1難度:0.2 -
3.如圖,在正方形紙片ABCD中,點E為正方形CD邊上的一點(不與點C,點D重合),將正方形紙片折疊,使點A落在點E處,點B落在點F處,EF交BC于點H,折痕為GM,連接AE、AH,AH交GM于點K.下列結(jié)論:①△AME是等腰三角形;②AE=MG;③AE平分∠DEF;④AE=AH;⑤∠EAH=45°,其中正確結(jié)論的個數(shù)是( ?。?/h2>
發(fā)布:2025/5/25 13:30:1組卷:470引用:4難度:0.1