若存在任意一個(gè)三位數(shù)M,滿足各數(shù)位上的數(shù)字均不為0,百位上的數(shù)字與十位上的數(shù)字的2倍之和等于十位上的數(shù)字與個(gè)位上的數(shù)字的2倍之和,則稱這個(gè)三位數(shù)M為“雙增數(shù)”.對(duì)于一個(gè)“雙增數(shù)”M=abc,規(guī)定:s=a+c,t=b+c,F(M)=3s+2t.
例如,M=243,因?yàn)?+2×4=4+2×3,故M是一個(gè)“雙增數(shù)”,s=2+3=5,t=4+3=7,則F(M)=3×5+2×7=29.
(1)請(qǐng)判斷365,597是不是“雙增數(shù)”,說明理由.若是,請(qǐng)求出F(M)的值;
(2)若三位數(shù)N為“雙增數(shù)”,N的百位數(shù)字為x-1,個(gè)位數(shù)字為y(其中x,y是正整數(shù),且3≤y≤7),當(dāng)N各數(shù)位上的數(shù)字之和與F(N)的和能被17整除時(shí),求所有滿足條件的“雙增數(shù)”N的值.
abc
【考點(diǎn)】因式分解的應(yīng)用.
【答案】(1)365不是“雙增數(shù)”,597是“雙增數(shù)”.
(2)354,825
(2)354,825
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/13 8:0:9組卷:549引用:3難度:0.5
相似題
-
1.若一個(gè)四位正整數(shù)
滿足:a+c=b+d,我們就稱該數(shù)是“交替數(shù)”,則最小的“交替數(shù)”是 ;若一個(gè)“交替數(shù)”m滿足千位數(shù)字與百位數(shù)字的平方差是15,且十位數(shù)字與個(gè)位數(shù)的和能被5整除.則滿足條件的“交替數(shù)”m的最大值為 .abcd發(fā)布:2025/6/10 6:0:2組卷:1678引用:14難度:0.3 -
2.已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2+b2c2=a4-b4,則△ABC的形狀是 .
發(fā)布:2025/6/10 6:0:2組卷:365引用:2難度:0.6 -
3.如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)奇數(shù)的平方差,那么稱這個(gè)正整數(shù)為“友好數(shù)”.如:①8=32-12;②16=52-32;③24=72-52,因此8,16,24都是“友好數(shù)”.
(1)32是“友好數(shù)”嗎?為什么?
(2)若一個(gè)“友好數(shù)”能表示為兩個(gè)連續(xù)奇數(shù)2k+1和2k-1(k為正整數(shù))的平方差,則這個(gè)“友好數(shù)”是8的倍數(shù)嗎?請(qǐng)用因式分解的方法進(jìn)行說明.發(fā)布:2025/6/10 2:30:2組卷:95引用:4難度:0.6