在平面直角坐標(biāo)系中,已知點(diǎn)A,B的坐標(biāo)分別是(0,-1),(0,1),直線(xiàn)AM,BM相交于點(diǎn)M,且它們的斜率之積為-12.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)點(diǎn)T在直線(xiàn)x=2上,過(guò)點(diǎn)T的兩條直線(xiàn)分別交軌跡C于E,F(xiàn)和P,Q兩點(diǎn),且|TE|?|TF|=|TP|?|TQ|,求證:kEF+kPQ為定值.
-
1
2
【考點(diǎn)】直線(xiàn)與圓錐曲線(xiàn)的綜合;軌跡方程.
【答案】(1);
(2)證明見(jiàn)解析.
x
2
2
+
y
2
=
1
(
x
≠
0
)
(2)證明見(jiàn)解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/22 1:0:1組卷:60引用:3難度:0.5
相似題
-
1.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線(xiàn)
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線(xiàn)的離心率e;
(Ⅱ)過(guò)點(diǎn)P作直線(xiàn)分別與雙曲線(xiàn)漸近線(xiàn)相交于P1,P2兩點(diǎn),且,OP1?OP2=-274,求雙曲線(xiàn)E的方程;2PP1+PP2=0
(Ⅲ)若過(guò)點(diǎn)Q(m,0)(m為非零常數(shù))的直線(xiàn)l與(2)中雙曲線(xiàn)E相交于不同于雙曲線(xiàn)頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問(wèn)在x軸上是否存在定點(diǎn)G,使MQ=λQN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:72引用:5難度:0.7 -
2.已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線(xiàn)C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
.5
(1)求曲線(xiàn)C的方程;
(2)過(guò)F1(-3,0)引一條傾斜角為45°的直線(xiàn)與曲線(xiàn)C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:104引用:1難度:0.9 -
3.若過(guò)點(diǎn)(0,-1)的直線(xiàn)l與拋物線(xiàn)y2=2x有且只有一個(gè)交點(diǎn),則這樣的直線(xiàn)有( )條.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7