著名數(shù)學(xué)家龐加萊說“我感受到了數(shù)學(xué)的美、數(shù)字和形狀的協(xié)調(diào),以及幾何的優(yōu)雅”.為了讓學(xué)生體會數(shù)學(xué)之美,某校數(shù)學(xué)組開設(shè)了特色校本課程,老師利用兩類圓錐曲線構(gòu)造了一個近似“W”形狀的曲線,它由拋物線C1的部分和橢圓C2的一部分構(gòu)成(如圖1),已知在平面直角坐標(biāo)系xOy中,C1:x2=2py(p>0)和C2:y2a2+x2b2=1(a>b>0)交于A,B兩點,F(xiàn)1是公共焦點,|OF1|=1,|AF1|=53(如圖2).
(1)求C1和C2的方程;
(2)過點F1作直線l與“W”形狀曲線依次交于C,D,E,F(xiàn)四點,若|CF|=λ|DE|,求實數(shù)λ的取值范圍.
y
2
a
2
+
x
2
b
2
=
1
5
3
【考點】直線與圓錐曲線的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:161引用:3難度:0.4
相似題
-
1.已知兩個定點坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:80引用:1難度:0.9 -
2.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:25引用:5難度:0.7
把好題分享給你的好友吧~~