已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的左焦點(diǎn)為F,F(xiàn)到C的一條漸近線的距離為1,直線l與C交于不同的兩點(diǎn)P,Q,當(dāng)直線l經(jīng)過C的右焦點(diǎn)且垂直于x軸時(shí),PQ=233.
(1)求C的方程;
(2)是否存在x軸上的定點(diǎn)M,使得直線l過點(diǎn)M時(shí),恒有∠PFM=∠QFM?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
x
2
a
2
-
y
2
b
2
2
3
3
【考點(diǎn)】直線與橢圓的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:139引用:1難度:0.5
相似題
-
1.已知橢圓E:
的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓于A,B兩點(diǎn),若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( ?。?/h2>x2a2+y2b2=1(a>b>0)發(fā)布:2024/12/3 9:0:2組卷:927引用:27難度:0.7 -
2.如果橢圓
的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是( ?。?/h2>x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:451引用:3難度:0.6 -
3.已知
為橢圓A(-1,233),B(1,-233),P(x0,y0)上不同的三點(diǎn),直線l:x=2,直線PA交l于點(diǎn)M,直線PB交l于點(diǎn)N,若S△PAB=S△PMN,則x0=( )C:x23+y22=1發(fā)布:2024/12/6 6:0:1組卷:231引用:6難度:0.5
把好題分享給你的好友吧~~