試卷征集
加入會員
操作視頻

某研究性學(xué)習(xí)分)、組在學(xué)習(xí)《簡單的圖案設(shè)計》時,發(fā)現(xiàn)了一種特殊的四邊形,如圖1,在四邊形ABCD中,AB=AD,∠B+∠D=180°,我們把這種四邊形稱為“等補四邊形”.
菁優(yōu)網(wǎng)
如何求“等補四邊形”的面積呢?
探究一:
如圖2,已知“等補四邊形”ABCD,若∠A=90°,將“等補四邊形”ABCD繞點A順時針旋轉(zhuǎn)90°,可以形成一個直角梯形(如圖3).若BC=8cm,CD=4cm,則“等補四邊形”ABCD的面積為
49
49
cm2
探究二:
如圖4,已知“等補四邊形”ABCD,若∠A=120°,將“等補四邊形”ABCD繞點A順時針旋轉(zhuǎn)120°,再將得到的四邊形按上述方式旋轉(zhuǎn)120°,可以形成一個等邊三角形(如圖5).若BC=5cm,CD=3cm,則“等補四邊形”ABCD的面積為
16
3
3
16
3
3
cm2
由以上探究可知,對一些特殊的“等補四邊形”,只需要知道BC,CD的長度,就可以求它的面積.那么,如何求一般的“等補四邊形”的面積呢?
探究三:
如圖6,已知“等補四邊形”ABCD,連接AC,將△ACD以點A為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)一定角度,使AD與AB重合,得到△ABC′,點C的對應(yīng)點為點C′.
(1)由旋轉(zhuǎn)得:∠D=∠
ABC′
ABC′
,因為∠ABC+∠D=180°,所以∠ABC+∠ABC'=180°,即點C′,B,C在同一直線上,所以我們拼成的圖形是一個三角形,即△ACC'.
(2)如圖7,在△ACC'中,作AH⊥BC于點H,若AC=13cm,AH=5cm,請求出“等補四邊形”ABCD的面積.

【考點】四邊形綜合題
【答案】49;
16
3
3
;ABC′
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/28 8:51:19組卷:89引用:1難度:0.1
相似題
  • 菁優(yōu)網(wǎng)1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
    2
    AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是
    .(填序號)

    發(fā)布:2024/12/23 18:30:1組卷:1468引用:7難度:0.3
  • 2.我們知道,一個正方形的任意3個頂點都可連成一個等腰三角形,進(jìn)一步探究是否存在以下形狀的四邊形,它的任意3個頂點都可連成一個等腰三角形:
    (1)不是正方形的平行四邊形;
    (2)梯形;
    (3)既不是平行四邊形,也不是梯形的四邊形.
    如果存在滿足條件的四邊形,請分別畫出(只需各畫一個,并說明其形狀或邊、角關(guān)系特征,不必說明理由).

    發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2
  • 3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
    (1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
    (2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
    (3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4
    5
    ,AB=4,則CE=
    .(直接寫出結(jié)果)
    菁優(yōu)網(wǎng)

    發(fā)布:2024/12/23 18:30:1組卷:1408引用:10難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正