問題探究
(1)如圖(1),點(diǎn)E是正△ABC高AD上的一定點(diǎn),請?jiān)贏B上找一點(diǎn)F,使EF=12AE,并說明理由;
(2)如圖(2),點(diǎn)M是邊長為2的正△ABC高AD上的一動(dòng)點(diǎn),求12AM+MC的最小值;
問題解決
(3)如圖(3),A、B兩地相距300km,AC是筆直地沿東西方向向兩邊延伸的一條鐵路.點(diǎn)B到AC的最短距離為180km.今計(jì)劃在鐵路線AC上修一個(gè)中轉(zhuǎn)站M,再在BM間修一條筆直的公路.如果同樣的物資在每千米公路上的運(yùn)費(fèi)是鐵路上的兩倍.那么,為使通過鐵路由A到M再通過公路由M到B的總運(yùn)費(fèi)達(dá)到最小值,請確定中轉(zhuǎn)站M的位置,并求出AM的長.(結(jié)果保留根號)

1
2
AE
1
2
AM
+
MC
【考點(diǎn)】三角形綜合題.
【答案】(1)見解析;
(2);
(3)M點(diǎn)見解析,AM=(240-60)km.
(2)
3
(3)M點(diǎn)見解析,AM=(240-60
3
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/7 8:0:9組卷:60引用:1難度:0.4
相似題
-
1.綜合與實(shí)踐
問題情境:數(shù)學(xué)活動(dòng)課上,王老師出示了一個(gè)問題:
如圖1,在△ABC中,D在AB邊上,E在AC邊上,BE與CD相交于點(diǎn)F,∠A=∠EBC+∠DCB.
求證∠A+∠DFE=180°.
獨(dú)立思考:(1)請解答王老師提出的問題.
實(shí)踐探究:(2)在原有問題條件不變的情況下,王老師增加下面的條件,并提出新問題,請你解答.
“如圖2,若AB=AC.猜想線段BE與線段CD的數(shù)量關(guān)系,并證明.”
問題解決:(3)數(shù)學(xué)活動(dòng)小組同學(xué)對上述問題進(jìn)行研究之后發(fā)現(xiàn),當(dāng)AE=EF時(shí),若給出圖2中任意兩邊長,則圖2中所有已經(jīng)用字母標(biāo)記的線段長均可求.該小組提出下面的問題,請你解答.
“如圖3,在(2)的條件下,若AE=EF=2,EC=3,求AD的長.發(fā)布:2025/6/9 14:30:1組卷:125引用:1難度:0.1 -
2.如圖,等邊△ABC中,D,E分別是AC,BC邊上的點(diǎn),且BE=CD,連接AE,BD相交于點(diǎn)P,點(diǎn)F在BC的延長線上,且∠CAF=2∠CBD,現(xiàn)給出以下結(jié)論:
①AE=BD;
②∠APG=60°;
③DG=2CD;
④CF=CD+GF.
其中正確的是 .(填序號)發(fā)布:2025/6/9 14:0:1組卷:480引用:3難度:0.3 -
3.如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限內(nèi)一點(diǎn),CB⊥y軸交y軸負(fù)半軸于B(0,b),且|a-3|+(b+4)2=0,S四邊形AOBC=16.
(1)求點(diǎn)C的坐標(biāo).
(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點(diǎn)P,求∠APD的度數(shù);(點(diǎn)E在x軸的正半軸).
(3)如圖3,當(dāng)點(diǎn)D在線段OB上運(yùn)動(dòng)時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則點(diǎn)D在運(yùn)動(dòng)過程中,∠N的大小是否會(huì)發(fā)生變化?若不變化,求出其值;若變化,請說明理由.發(fā)布:2025/6/9 14:0:1組卷:1193引用:6難度:0.2