在直角坐標系xOy中,已知直線l的參數方程為x=-2+35t, y=5+45t,
(t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ2+4ρcosθ=12.
(1)求圓C的直角坐標方程,并指出圓心坐標和半徑;
(2)設點M的直角坐標為(-2,5),直線l與圓C的交點為A,B,求|MA|2?|MB|+|MA|?|MB|2的值.
x = - 2 + 3 5 t , |
y = 5 + 4 5 t , |
【考點】簡單曲線的極坐標方程.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:79引用:7難度:0.7
相似題
-
1.在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1:ρcosθ=3,曲線C2:ρ=4cosθ(
).0≤θ<π2
(1)求C1與C2交點的極坐標;
(2)設點Q在C2上,,求動點P的極坐標方程.OQ=23QP發(fā)布:2024/12/29 3:0:1組卷:144難度:0.3 -
2.已知點的極坐標是
,則它的直角坐標是(3,π4)發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7 -
3.極坐標方程ρcosθ=2sin2θ表示的曲線為( ?。?/h2>
發(fā)布:2024/12/29 2:30:1組卷:244引用:6難度:0.7