某省在高考改革試點方案中規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;從2020年開始,高考總成績由語、數(shù)、外三門統(tǒng)考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低依次劃分為A,B+,B,C+,C,D+,D,E共八個等級,參照正態(tài)分布的原則,確定各等級人數(shù)所占比例分別為3%,7%,16%,24%,24%,16%,7%,3%.選考科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到[91,100],[81,90],[71,80],[61,70],[51,60],[41,50],[31,40],[21,30]八個分數(shù)區(qū)間,得到考生的等級成績.某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六門選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,132).
(1)求該校高一年級學生的物理原始成績在區(qū)間(47,86)的人數(shù);
(2)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中某門選考科目的等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.
附:若隨機變量ξ~N(μ,σ2),則P(μ-σ≤ξ≤μ+σ)≈0.6827,P(μ-2σ≤ξ≤μ+2σ)≈0.9545,P(μ-3σ≤ξ≤μ+3σ)≈0.9973.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/6 8:0:9組卷:6引用:1難度:0.5
相似題
-
1.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內,其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設離散型隨機變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7
把好題分享給你的好友吧~~