本學(xué)期,我們利用“構(gòu)造軸對(duì)稱圖形——等邊三角形”證明了定理:定理在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.
證明過(guò)程如下:
已知:如圖1-10(1),△ABC是直角三角形,∠C=90°,∠A=30°.求證:BC= 1 2 ![]() 證明:如圖1-10(2),延長(zhǎng)BC至點(diǎn)D,使CD=BC,連接AD. ∵∠ACB=90°,∠BAC=30°. ∴∠ACD=90°,∠B=60°. ∵AC=AC, ∴△ABC≌△ADC(SAS). ∴AB=AD(全等三角形的對(duì)應(yīng)邊相等). ∴△ABD是等邊三角形(有一個(gè)角等于60°的等腰三角形是等邊三 角形). ∴BC= 1 2 1 2 |
(1)如圖1-10(1),在Rt△ABC中,∠C=90°,若∠A=30°,AB=4,則BC=
2
2
;【類比證明】
(2)如圖1,請(qǐng)類比以上證明過(guò)程,證明:在Rt△ABC中,若∠C=90°,AB=2BC,則∠A=30°;
【遷移創(chuàng)新】
構(gòu)造具有特殊性質(zhì)的軸對(duì)稱圖形(如等邊三角形),從而利用軸對(duì)稱圖形的性質(zhì)證明結(jié)論是幾何問(wèn)題的數(shù)學(xué)證明中常見(jiàn)的思路.請(qǐng)你嘗試解決以下問(wèn)題.
(3)如圖2,等邊△ABC中,延長(zhǎng)BA,BC,使AD=BE,連接DC,DE.求證:DC=DE.

【考點(diǎn)】三角形綜合題.
【答案】2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:612引用:4難度:0.5
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:208引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點(diǎn)F在BC上,點(diǎn)A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線FB上時(shí)停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時(shí),DF∥AC;當(dāng)∠AFD=°時(shí),DF⊥AB;
(2)在旋轉(zhuǎn)過(guò)程中,DF與AB的交點(diǎn)記為P,如圖2,若△AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說(shuō)明理由.發(fā)布:2024/12/23 18:30:1組卷:1723引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AD上,以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng):動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段BC上,以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=秒時(shí),PQ平分線段BD;
(2)當(dāng)t=秒時(shí),PQ⊥x軸;
(3)當(dāng)時(shí),求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:166引用:3難度:0.1