如圖1,已知在平面直角坐標系中,拋物線y=ax2+bx+3經過A(-1,0),B(3,0)兩點,且與y軸交于點C.
(1)求拋物線的解析式及頂點D的坐標;
(2)設△COB沿x軸正方向平移t(0<t≤3)個單位長度時,△COB與△CDB重疊部分的面積為S,求S與t之間的函數關系式,并指出t的取值范圍;
考生請注意:下面的(3),(4),(5)題為三選一的選做題,即只能選做其中一個題目,多答時只按作答的首題評分,切記喲!
(3)點P是x軸上的一個動點,過點P作直線l∥AC交拋物線于點Q,試探究:隨著P點的運動,在拋物線上是否存在點Q,使以點A、P、Q、C為頂點的四邊形是平行四邊形?若存在,請直接寫出符合條件的點Q的坐標;若不存在,請說明理由;
(4)設點Q是y軸右側拋物線上異于點B的點,過點Q作QP∥x軸交拋物線于另一點P,過P作PH⊥x軸,垂足為H,過Q作QG⊥x軸,垂足為G,則四邊形QPHG為矩形.試探究在點Q運動的過程中矩形QPHG能否成為正方形?若能,請直接寫出符合條件的點Q的坐標;若不能,請說明理由;
(5)試探究,在y軸右側的拋物線上是否存在一點Q,使△QDC是等腰三角形?若存在,請直接寫出符合條件的點Q坐標;若不存在,請說明理由.

【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:404引用:50難度:0.5
相似題
-
1.在平面直角坐標系xOy中,二次函數y=ax2+bx+4(a<0)的圖象與x軸交于點A(-2,0)和點B(4,0),與y軸交于點C,直線BC與對稱軸于點D.
(1)求二次函數的解析式.
(2)若拋物線y=ax2+bx+4(a<0)的對稱軸上有一點M,以O、C、D、M四點為頂點的四邊形是平行四邊形時,求點M的坐標.
(3)將拋物線y=ax2+bx+4(a<0)向右平移2個單位得到新拋物線,新拋物線與原拋物線交于點E,點F是新拋物線的對稱軸上的一點,點G是坐標平面內一點,當以D、E、F、G四點為頂點的四邊形是菱形時,求點F的坐標.發(fā)布:2025/5/23 23:30:1組卷:634引用:3難度:0.3 -
2.如圖,拋物線y=ax2+bx+c與x軸交于A(
,0),B兩點(點B在點A的左側),與y軸交于點C,且OB=3OA=3OC,∠OAC的平分線AD交y軸于點D,過點A且垂直于AD的直線l交y軸于點E,點P是x軸下方拋物線上的一個動點,過點P作PF⊥x軸,垂足為F,交直線AD于點H.3
(1)求拋物線的解析式;
(2)設點P的橫坐標為m,當FH=HP時,求m的值;
(3)當直線PF為拋物線的對稱軸時,以點H為圓心,HC為半徑作⊙H,點Q為⊙H上的一個動點,求12AQ+EQ的最小值.14發(fā)布:2025/5/24 0:0:1組卷:3204引用:2難度:0.3 -
3.如圖,是某水上樂園為親子游樂區(qū)新設滑梯的示意圖,其中線段PA是豎直高度為6米的平臺,PO垂直于水平面,滑道分為兩部分,其中AB段是雙曲線y=
的一部分,BCD段是拋物線的一部分,兩滑道的連接點B為拋物線的頂點,且B點的豎直高度為2米,滑道與水平面的交點D距PO的水平距離為7米,以點O為坐標原點建立平面直角坐標系,滑道上點的豎直高度為y,距直線PO的水平距離為x.10x
(1)請求出滑道BCD段y與x之間的函數關系式;
(2)當滑行者滑到C點時,距地面的距離為1米,求滑行者此時距滑道起點A的水平距離;
(3)在建模實驗中發(fā)現(xiàn),為保證滑行者的安全,滑道BCD落地點D與最高點B連線與水平面夾角應不大于45°,且由于實際場地限制,≥OPOD,求OD長度的取值范圍.12發(fā)布:2025/5/23 23:0:1組卷:271難度:0.2