已知函數(shù)f(x)=23sin(ωx2+π12)cos(ωx2+π12)-2cos2(ωx2+π12)+1(ω>0)圖象上相鄰的兩個(gè)最高點(diǎn)之間的距離為π.
(1)求f(x)的單調(diào)增區(qū)間;
(2)是否存在兩個(gè)不同的實(shí)數(shù)x1,x2∈[0,π2],使得點(diǎn)(x1,f(x1)),(x2,f(x2))關(guān)于x=π8的對稱點(diǎn)都在函數(shù)y=25sinxcosx+a的圖象上,若存在,請求出實(shí)數(shù)a的取值范圍;若不存在,請說明理由.
f
(
x
)
=
2
3
sin
(
ωx
2
+
π
12
)
cos
(
ωx
2
+
π
12
)
-
2
co
s
2
(
ωx
2
+
π
12
)
+
1
(
ω
>
0
)
x
2
∈
[
0
,
π
2
]
x
=
π
8
y
=
2
5
sinxcosx
+
a
【考點(diǎn)】三角函數(shù)中的恒等變換應(yīng)用;正弦函數(shù)的單調(diào)性.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:100引用:1難度:0.6
相似題
-
1.已知sin(
-α)=π6,則cos(23+2α)=( ?。?/h2>2π3發(fā)布:2024/12/11 21:30:3組卷:168引用:6難度:0.7 -
2.已知函數(shù)f(x)=sin2x-2cos2x+1,則( ?。?/h2>
發(fā)布:2024/12/5 6:30:3組卷:33引用:2難度:0.8 -
3.已知k為實(shí)數(shù),
.f(x)=2sin2(π4+x)-k?cos2x
(1)若k=0,求關(guān)于x的方程f(x)=1在[0,π]上的解;
(2)若,求函數(shù)y=f(x),x∈R的單調(diào)減區(qū)間;k=3
(3)已知a為實(shí)數(shù)且,若關(guān)于x的不等式|f(x)-a|<2在k=3時(shí)恒成立,求a的取值范圍.x∈[π4,π2]發(fā)布:2024/10/23 19:0:2組卷:40引用:3難度:0.5
把好題分享給你的好友吧~~