試卷征集
加入會員
操作視頻

已知橢圓C:
x
2
a
2
+
y
2
b
2
=1(a>b>0)的離心率為
3
2
,橢圓的上頂點B到兩焦點的距離之和為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C交于異于點B的兩點P,Q,直線BP,BQ與x軸相交于M(xM,0),N(xN,0),若
1
x
M
+
1
x
N
=1,求證:直線l過一定點,并求出定點坐標(biāo).

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:427引用:5難度:0.5
相似題
  • 1.已知橢圓M:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)上任意一點P到橢圓M兩個焦點F1,F(xiàn)2的距離之和為4,且∠F1PF2的最大值為120°.
    (1)求橢圓M的標(biāo)準(zhǔn)方程;
    (2)設(shè)A,B分別為M的左、右頂點,過A點作兩條互相垂直的直線AC,AD分別與M交于C,D兩點,若△BCD的面積為
    8
    41
    25
    ,求直線CD的方程.

    發(fā)布:2024/7/26 8:0:9組卷:9引用:2難度:0.6
  • 2.已知橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    上任意一點到兩焦點F1,F(xiàn)2距離之和為
    4
    2
    ,離心率為
    3
    2

    (1)求橢圓的標(biāo)準(zhǔn)方程;
    (2)求橢圓的長軸長,焦點坐標(biāo),準(zhǔn)線方程.

    發(fā)布:2024/6/30 8:0:9組卷:98引用:2難度:0.7
  • 3.橢圓的兩個焦點是(-4,0)和(4,0),橢圓上的點M到兩個焦點的距離之和等于10,則橢圓的標(biāo)準(zhǔn)方程是(  )

    發(fā)布:2024/10/21 12:0:1組卷:317引用:1難度:0.8
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正