如果一個(gè)兩位數(shù)的個(gè)位數(shù)字是n,十位數(shù)字是m,那么我們可以把這個(gè)兩位數(shù)簡(jiǎn)記為mn,即mn=10m+n.如果一個(gè)三位數(shù)的個(gè)位數(shù)字是c,十位數(shù)字是b,百位數(shù)字是a,那么我們可以把這個(gè)三位數(shù)簡(jiǎn)記為abc,即abc=100a+10b+c.
(1)若一個(gè)兩位數(shù)mn滿(mǎn)足mn=7m+5n,請(qǐng)求出m,n的數(shù)量關(guān)系并寫(xiě)出這個(gè)兩位數(shù).
(2)若規(guī)定:對(duì)任意一個(gè)三位數(shù)abc進(jìn)行M運(yùn)算,得到整數(shù)M(abc)=a3+b2+c.如:M(321)=33+22+1=32.若一個(gè)三位數(shù)5xy滿(mǎn)足M(5xy)=132.求這個(gè)三位數(shù).
(3)已知一個(gè)三位數(shù)abc和一個(gè)兩位數(shù)ac,若滿(mǎn)足abc=6ac+5c,請(qǐng)求出所有符合條件的三位數(shù).
mn
mn
abc
abc
mn
mn
abc
abc
321
5
xy
5
xy
abc
ac
abc
ac
【考點(diǎn)】數(shù)的十進(jìn)制;有理數(shù)的混合運(yùn)算.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:329引用:2難度:0.3
相似題
-
1.設(shè)
是一個(gè)三位數(shù),若a+b+c可以被3整除,則這個(gè)三位數(shù)可以被3整除.abc
證明:=100a+10b+cabc
=(99a+9b)+(a+b+c)
=9(11a+b)+(a+b+c).
∵9能被3整除,(11a+b)是整數(shù),
∴9(11a+b)可以被3整除.
又∵(a+b+c)可以被3整除(已知),
∴這個(gè)三位數(shù)可以被3整除.
(1)請(qǐng)仿照上面的過(guò)程,證明:設(shè)是一個(gè)四位數(shù),若a+b+c+d可以被3整除,則這個(gè)四位數(shù)可以被3整除;abcd
(2)已知一個(gè)兩位數(shù)的十位上的數(shù)字比個(gè)位上的數(shù)字的2倍大3,這個(gè)兩位數(shù)能否被3整除?如果能,請(qǐng)說(shuō)明理由;如果不能,請(qǐng)舉例說(shuō)明.發(fā)布:2024/9/6 19:0:9組卷:157引用:2難度:0.5 -
2.已知一個(gè)三位數(shù)
,如果它的百位數(shù)字加上2與十位數(shù)字加上5的和等于個(gè)位數(shù)字加上8,則稱(chēng)這個(gè)三位數(shù)叫“258數(shù)”.如:245,∵(2+2)+(4+5)=5+8=13,∴245是“258數(shù)”;437,∵(4+2)+(3+5)=14,7+8=15,14≠15,∴437不是“258數(shù)”.m=abc
(1)請(qǐng)根據(jù)材料判斷526和738是不是“258數(shù)”,并說(shuō)明理由;
(2)若“258數(shù)”(1≤a<b<c≤9,且a,b、c均為整數(shù))能被3整除,請(qǐng)求出所有符合題意的m的值.m=abc發(fā)布:2024/9/6 1:0:8組卷:146引用:1難度:0.3 -
3.若一個(gè)四位正整數(shù)
滿(mǎn)足:a+c=b+d,我們就稱(chēng)該數(shù)是“交替數(shù)”,如對(duì)于四位數(shù)3674,∵3+7=6+4,∴3674是“交替數(shù)”,對(duì)于四位數(shù)2353,∵2+5≠3+3,∴2353不是“交替數(shù)”.abcd
(1)最小的“交替數(shù)”是 ,最大的“交替數(shù)”是 .
(2)判斷2376是否是“交替數(shù)”,并說(shuō)明理由;
(3)若一個(gè)“交替數(shù)”滿(mǎn)足千位數(shù)字與百位數(shù)字的平方差是12,且十位數(shù)字與個(gè)位數(shù)的和能被6整除.請(qǐng)求出所有滿(mǎn)足條件的“交替數(shù)”.發(fā)布:2024/10/5 12:0:2組卷:449引用:4難度:0.3