在直角坐標(biāo)系中,有正方形ABCD(四條邊相等,四個(gè)內(nèi)角都是90°),其中AB平行于y軸,點(diǎn)在第二象限.
(1)如圖,若A(-2,4),AB長(zhǎng)為6,則點(diǎn)B,C,D的坐標(biāo)分別為:B (-2,-2)(-2,-2),C (4,-2)(4,-2),D (4,4)(4,4);
(2)若A(-3,a),B(-3,b),點(diǎn)是直角坐標(biāo)系中的一個(gè)動(dòng)點(diǎn),P(c,23a),點(diǎn)Q從B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿射線BC方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,若a-3+(b+2)2+|c+t-3|=0.
①當(dāng)t=2時(shí),求△APQ的面積;
②試問(wèn)是否存在點(diǎn)P,使得S△APQ=12S△APB,若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
P
(
c
,
2
3
a
)
a
-
3
+
(
b
+
2
)
2
+
|
c
+
t
-
3
|
=
0
S
△
APQ
=
1
2
S
△
APB
【考點(diǎn)】四邊形綜合題.
【答案】(-2,-2);(4,-2);(4,4)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/16 8:0:10組卷:90引用:2難度:0.3
相似題
-
1.探究問(wèn)題:
(1)方法感悟:
如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
證明:延長(zhǎng)CB到G,使BG=DE,連接AG,
∵四邊形ABCD為正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四邊形ABCD為正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠.
又AG=AE,AF=AF,
∴△GAF≌.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
變化:在圖①中,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,請(qǐng)直接寫出AM和AB的數(shù)量關(guān)系 ;
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=∠BAD,連接EF,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想DF,BE,EF之間有何數(shù)量關(guān)系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關(guān)系,并證明你的猜想.12
(3)問(wèn)題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說(shuō)明理由).猜想:∠B與∠D滿足關(guān)系:.12發(fā)布:2025/6/24 19:0:1組卷:881引用:1難度:0.1 -
2.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當(dāng)AD與邊BC相交,點(diǎn)D與點(diǎn)F在直線AC的兩側(cè)時(shí),BD與CF的數(shù)量關(guān)系為
(2)將圖①中的菱形ADEF繞點(diǎn)A旋轉(zhuǎn)α(0°<α<180°),如圖②.
Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②證明你的結(jié)論.
Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時(shí),直接寫出CE的長(zhǎng)度.發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1 -
3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點(diǎn),F(xiàn)是正方形ABCD外一點(diǎn),連接BE、CE、DE、BF、CF、EF.
(1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說(shuō)明理由.
(2)在(1)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求BE:BF的值.
(3)在(2)的條件下,若正方形ABCD的邊長(zhǎng)為(3+3)cm,∠EDC=30°,求△BCF的面積.7發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5