已知函數(shù)f(x)=2lnx-ax+1(a∈R).
(1)討論函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(2)已知函數(shù)g(x)=eax-ex2(a∈R),當(dāng)0<a<2ee時(shí),關(guān)于x的方程f(x)=g(x)有兩個(gè)實(shí)根x1,x2(x1<x2),求證:x1-e<1x2-1e.(注:e=2.71828…是自然對(duì)數(shù)的底數(shù))
0
<
a
<
2
e
e
x
1
-
e
<
1
x
2
-
1
e
【答案】(1)當(dāng)時(shí),函數(shù)f(x)無(wú)零點(diǎn),當(dāng)a≤0或時(shí),函數(shù)f(x)只有1個(gè)零點(diǎn),當(dāng)時(shí),函數(shù)f(x)有兩個(gè)零點(diǎn);
(2)證明過(guò)程見(jiàn)解析.
a
>
2
e
e
a
=
2
e
e
0
<
a
<
2
e
e
(2)證明過(guò)程見(jiàn)解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/23 4:0:8組卷:66引用:3難度:0.5
相似題
-
1.已知函數(shù)f(x)=(x-a)lnx(a∈R),它的導(dǎo)函數(shù)為f'(x).
(1)當(dāng)a=1時(shí),求f'(x)的零點(diǎn);
(2)若函數(shù)f(x)存在極小值點(diǎn),求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數(shù)
有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為( ?。?/h2>f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:125引用:4難度:0.5 -
3.定義:設(shè)f'(x)是f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”且“拐點(diǎn)”就是三次函數(shù)圖像的對(duì)稱中心,已知函數(shù)
的對(duì)稱中心為(1,1),則下列說(shuō)法中正確的有( ?。?/h2>f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:185引用:7難度:0.5