如圖,四邊形ABCD是證明勾股定理時用到的一個圖形,a,b,c是Rt△ABC和Rt△BED的邊長,易知AE=2c,這時我們把關(guān)于x的形如ax2+2cx+b=0的一元二次方程稱為“勾系一元二次方程”,請解決下列問題:
(1)寫出一個“勾系一元二次方程”;
(2)求證:關(guān)于x的“勾系一元二次方程”ax2+2cx+b=0必有實數(shù)根;
(3)若x=-1是“勾系一元二次方程”ax2+2cx+b=0的一個根,且四邊形ACDE的周長是6,求△ABC的面積.
AE
=
2
c
a
x
2
+
2
cx
+
b
=
0
a
x
2
+
2
cx
+
b
=
0
a
x
2
+
2
cx
+
b
=
0
【考點】四邊形綜合題.
【答案】(1)3x2+5x+4=0;
(2)見解答;
(3).
2
(2)見解答;
(3)
1
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:204引用:4難度:0.1
相似題
-
1.如圖,正方形ABCD中,點E在邊AD上(不與端點A,D重合),點A關(guān)于直線BE的對稱點為點F,連接CF,設(shè)∠ABE=α.
(1)求∠AFC的大??;
(2)過點C作CG⊥AF,垂足為G,連接DG.
①求證:DG∥CF;
②連接OD,若OD⊥DG,求sinα的值.發(fā)布:2025/5/31 13:30:2組卷:1339引用:5難度:0.3 -
2.如圖,在Rt△ABC中,∠B=90°,AC=10,∠C=30°,點D從點C出發(fā)沿CA方向以每秒2個單位長度的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長度的速度向點B勻速運動,當(dāng)其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t(t>0)秒,過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:四邊形AEFD是平行四邊形;
(2)當(dāng)t為何值時,△DEF是等邊三角形?說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?(請直接寫出t的值)發(fā)布:2025/5/31 17:0:8組卷:981引用:4難度:0.1 -
3.如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a,b,c是Rt△ABC和Rt△BED邊長,易知AE=
c,這時我們把關(guān)于x的形如ax2+2cx+b=0的一元二次方程稱為“勾系一元二次方程”.2
請解決下列問題:
(1)判斷下列方程是否是“勾系一元二次方程”:
①2x2+x+1=0 (填“是”或“不是”);5
②3x2+5x+4=0 (填“是”或“不是”)2
(2)求證:關(guān)于x的“勾系一元二次方程”ax2+cx+b=0必有實數(shù)根;2
(3)若x=-1是“勾系一元二次方程”ax2+cx+b=0的一個根,且四邊形ACDE的周長是12,求△ABC面積.2發(fā)布:2025/5/31 14:0:2組卷:623引用:4難度:0.3