已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的離心率為3,右準線方程為x=33.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.
C
:
x
2
a
2
-
y
2
b
2
3
x
=
3
3
【考點】雙曲線的標準方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/23 20:38:36組卷:2260引用:13難度:0.5
相似題
-
1.設(shè)橢圓C1的離心率為
,焦點在x軸上且長軸長為26,若曲線C2上的點到C1的兩個焦點的距離的差的絕對值為8,則曲線C2的標準方程為( )513發(fā)布:2024/10/10 14:0:1組卷:317引用:10難度:0.9 -
2.與橢圓
有公共焦點,且離心率e=x225+y216=1的雙曲線的方程為( ?。?/h2>32發(fā)布:2024/12/7 1:30:1組卷:474引用:3難度:0.7 -
3.與橢圓C:
共焦點且過點x225+y216=1的雙曲線的標準方程為( )P(2,2)發(fā)布:2024/10/18 21:0:1組卷:1266引用:9難度:0.8
相關(guān)試卷