我們知道,任意一個正整數(shù)x都可以進行這樣的分解:x=m×n(m,n是正整數(shù),且m≤n),在x的所有這種分解中,如果m,n兩因數(shù)之差的絕對值最小,我們就稱m×n是x的最佳分解.并規(guī)定:f(x)=mn.
例如:18可以分解成1×18,2×9或3×6,因為18-1>9-2>6-3,所以3×6是18的最佳分解,所以f(18)=36=12.
(1)填空:f(6)=2323;f(9)=11;
(2)一個兩位正整數(shù)t(t=10a+b,1≤a≤b≤9,a,b為正整數(shù)),交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為54,求出所有的兩位正整數(shù);并求f(t)的最大值;
(3)填空:
①f(22×3×5×7)=20212021;②f(23×3×5×7)=14151415;③f(24×3×5×7)=20212021;④f(25×3×5×7)=14151415.
m
n
3
6
1
2
2
3
2
3
20
21
20
21
14
15
14
15
20
21
20
21
14
15
14
15
【考點】因式分解的應(yīng)用.
【答案】;1;;;;
2
3
20
21
14
15
20
21
14
15
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/6 12:0:8組卷:1201引用:19難度:0.6
相似題
-
1.我們常利用數(shù)形結(jié)合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個棱長為a的大正方體進行以下探索:
(1)在大正方體一角截去一個棱長為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為 .
(2)將圖1中的幾何體分割成三個長方體①、②、③,如圖2所示,因為BC=a,AB=a-b,CF=b,所以長方體①的體積為ab(a-b),類似地,長方體②的體積為 ,長方體③的體積為 ;(結(jié)果不需要化簡)
(3)將表示長方體①、②、③的體積的式子相加,并將得到的多項式分解因式,結(jié)果為 .
(4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為 .
(5)已知a-b=4,ab=2,求a3-b3的值.發(fā)布:2024/12/23 14:0:1組卷:280引用:5難度:0.4 -
2.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:;
(2)錯誤的原因為:;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2495引用:25難度:0.6 -
3.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:384引用:7難度:0.6
把好題分享給你的好友吧~~