如圖,直線l:y=-3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2-2ax+a+4(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設點M的橫坐標為m,△ABM的面積為S,求S與m的函數(shù)表達式,并求出S的最大值;
(3)在(2)的條件下,當S取得最大值時,動點M相應的位置記為點M′.
①寫出點M′的坐標;
②將直線l繞點A按順時針方向旋轉(zhuǎn)得到直線l′,當直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點C,設點B、M′到直線l′的距離分別為d1、d2,當d1+d2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).

【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/9 17:0:1組卷:5427引用:12難度:0.1
相似題
-
1.如圖,拋物線y=ax2+3ax+4與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,且S△ABC=10,點P為第二象限內(nèi)拋物線上的一點,連接BP.
(1)求拋物線的解析式;
(2)如圖1,過點P作PD⊥x軸于點D,若∠BPD=2∠BCO,求的值;ADDB
(3)如圖2,設BP與AC的交點為Q,連接PC,是否存在點P,使S△PCQ=S△BCQ?若存在,求出點P的坐標;若不存在,請說明理由.發(fā)布:2025/6/14 11:0:2組卷:762引用:7難度:0.1 -
2.如圖,已知拋物線y=ax2+bx+c的頂點為A(4,3),與y軸相交于點B(0,-5),對稱軸為直線l,點M是線段AB的中點.
(1)求拋物線的表達式;
(2)寫出點M的坐標并求直線AB的表達式;
(3)設動點P,Q分別在拋物線和對稱軸l上,當以A,P,Q,M為頂點的四邊形是平行四邊形時,求P,Q兩點的坐標.發(fā)布:2025/6/14 12:30:1組卷:2575引用:8難度:0.3 -
3.如圖1,已知拋物線y=-
x2+2x+6與x軸的交點為A,B(點A在點B的左側(cè)),與y軸的交點為C,頂點為M.12
(1)直接寫出B,C,M三點的坐標,及直線BC的解析式(不寫過程);
(2)如圖2,平行于y軸的直線l1與線段BC相交于點P,與拋物線相交于點Q,求PQ的最大值;
(3)如圖3,平行于x軸的直線l2與直線BC相交于點D(x1,y1),與拋物線相交于點E(x2,y2)和點F(x3,y3),設w=-x1+x2+x3,若x1<x2<x3,求w的取值范圍.發(fā)布:2025/6/14 13:0:6組卷:119引用:1難度:0.4