如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.

【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:5012引用:71難度:0.3
相似題
-
1.如圖,在平面直角坐標系中,O為原點,已知點Q是射線OC上一點,OQ=18
,點P是x軸正半軸上一點,tan∠POC=1,連接PQ,⊙A經(jīng)過點O且與QP相切于點P,與邊OC相交于另一點D.2
(1)若圓心A在x軸上,求⊙A的半徑;
(2)若圓心A在x軸的上方,且圓心A到x軸的距離為2,求⊙A的半徑;
(3)在(2)的條件下,若OP<10,點M是經(jīng)過點O,D,P的拋物線上的一個動點,點F為x軸上的一個動點,若滿足tan∠OFM=的點M共有4個,求點F的橫坐標的取值范圍.12發(fā)布:2025/6/10 14:30:1組卷:383引用:3難度:0.1 -
2.已知拋物線y=x2-6與直線y=2交于A,B兩點(A在B左).
(1)求A,B兩點的坐標及AB的長;
(2)如圖1,點P(t,2)是直線y=2上B點右側一動點,過點P作直線l1:y=k1x+b1(k1>0)與拋物線有唯一公共點M;
①若S△ABM=8,求點P的坐標;2
②如圖2,過點P作直線l2:y=k2x+b2交拋物線于C,D兩點,且k1k2=-,點N是CD的中點,當點P運動時,求證:MN過定點,并求出定點坐標.12發(fā)布:2025/6/10 14:30:1組卷:368引用:3難度:0.1 -
3.如圖,拋物線y=
+mx+n與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(-4,0),C(0,-2).12x2
(1)求拋物線的函數(shù)表達式;
(2)點E是線段AC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDAF的面積最大?求出四邊形CDAF的最大面積及此時E點的坐標;
(3)在y軸上是否存在點P,使得∠OAP+∠OAC=60°?若存在,請直接寫出P點的坐標,若不存在,請說明理由.發(fā)布:2025/6/10 15:0:1組卷:494引用:3難度:0.1