如圖,拋物線y=12x2+bx+c與x軸交于點A(-2,0),點B(4,0),與y軸交于點C,對稱軸l與x軸交于點E.點A繞l上一點P逆時針旋轉90°,與點C重合.
(1)求拋物線的表達式;
(2)求點P的坐標;
(3)在平面內存在一點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形.請直接寫出點Q的坐標.
1
2
【考點】二次函數綜合題.
【答案】(1)y=x2-x-4;
(2)P(1,-1);
(3)點Q的坐標為(-3,-3)或(-1,3)或(3,-5).
1
2
(2)P(1,-1);
(3)點Q的坐標為(-3,-3)或(-1,3)或(3,-5).
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:195引用:2難度:0.3
相似題
-
1.如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且拋物線經過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=-1上的一個動點,求使△BPC為直角三角形的點P的坐標.發(fā)布:2025/6/23 12:30:1組卷:27643引用:102難度:0.5 -
2.已知拋物線y=x2-2mx+m2+m-1(m是常數)的頂點為P,直線l:y=x-1.
(1)求證:點P在直線l上;
(2)當m=-3時,拋物線與x軸交于A,B兩點,與y軸交于點C,與直線l的另一個交點為Q,M是x軸下方拋物線上的一點,∠ACM=∠PAQ(如圖),求點M的坐標;
(3)若以拋物線和直線l的兩個交點及坐標原點為頂點的三角形是等腰三角形,請直接寫出所有符合條件的m的值.發(fā)布:2025/6/23 13:0:10組卷:3408引用:53難度:0.2 -
3.如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.
(1)拋物線及直線AC的函數關系式;
(2)設點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.發(fā)布:2025/6/23 11:30:2組卷:1904引用:25難度:0.1