楊輝三角,又稱帕斯卡三角,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.在我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》(1261年)一書(shū)中用如圖所示的三角形解釋二項(xiàng)式乘方展開(kāi)式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….記作數(shù)列{an},若數(shù)列{an}的前n項(xiàng)和為Sn,則S47=( ?。?/h1>
【考點(diǎn)】二項(xiàng)式定理的應(yīng)用.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:168引用:8難度:0.5
相似題
-
1.楊輝是我國(guó)古代數(shù)學(xué)史上一位著述豐富的數(shù)學(xué)家,著有《詳解九章算法》、《日用算法》和《楊輝算法》.楊輝三角的發(fā)現(xiàn)要比歐洲早500年左右,由此可見(jiàn)我國(guó)古代數(shù)學(xué)的成就是非常值得中華民族自豪的.楊輝三角本身包含了很多有趣的性質(zhì),利用這些性質(zhì),可以解決很多數(shù)學(xué)問(wèn)題,如開(kāi)方、數(shù)列等.
我們借助楊輝三角可以得到以下兩個(gè)數(shù)列的和.1+1+1+…+1=n;1+2+3+…+C1n-1=C2n
若楊輝三角中第三斜行的數(shù):1,3,6,10,15,…構(gòu)成數(shù)列{an},則關(guān)于數(shù)列{an}敘述正確的是( ?。?/h2>發(fā)布:2024/11/27 6:30:2組卷:127引用:3難度:0.7 -
2.楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、教育家.楊輝三角是楊輝的一項(xiàng)重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多規(guī)律,如圖是一個(gè)11階楊輝三角.
(1)第20行中從左到右的第4個(gè)數(shù)為 ;
(2)若第n行中從左到右第7個(gè)與第9個(gè)數(shù)的比為,則n的值為 .79發(fā)布:2024/12/29 4:30:2組卷:26引用:3難度:0.8 -
3.“楊輝三角”是中國(guó)古代數(shù)學(xué)杰出的研究成果之一.如圖所示,由楊輝三角的左腰上的各數(shù)出發(fā),引一組平行線,從上往下每條線上各數(shù)之和依次為1,1,2,3,5,8,13,……,則下列選項(xiàng)不正確的是( )
發(fā)布:2024/12/29 12:0:2組卷:163引用:4難度:0.5
把好題分享給你的好友吧~~