觀察下列等式:
第1個(gè)等式:a1=11×3=12(1-13)
第2個(gè)等式:a2=13×5=12(13-15)
第3個(gè)等式:a3=15×7=12(15-17)
第4個(gè)等式:a4=17×9=12(17-19)
…
請(qǐng)回答下列問(wèn)題:
(1)按上述等式的規(guī)律,列出第5個(gè)等式:a5=19×1119×11=12×(19-111)12×(19-111)
(2)用含n的式子表示第n個(gè)等式:an=1(2n-1)(2n+1)1(2n-1)(2n+1)=12(12n-1-12n+1)12(12n-1-12n+1)
(3)求a1+a2+a3+a4+…+a100的值.
1
1
×
3
1
2
1
3
1
3
×
5
1
2
1
3
1
5
1
5
×
7
1
2
1
5
1
7
1
7
×
9
1
2
1
7
1
9
1
9
×
11
1
9
×
11
1
2
1
9
1
11
1
2
1
9
1
11
1
(
2
n
-
1
)
(
2
n
+
1
)
1
(
2
n
-
1
)
(
2
n
+
1
)
1
2
1
2
n
-
1
1
2
n
+
1
1
2
1
2
n
-
1
1
2
n
+
1
【考點(diǎn)】規(guī)律型:數(shù)字的變化類(lèi);有理數(shù)的混合運(yùn)算.
【答案】;×(-);;(-)
1
9
×
11
1
2
1
9
1
11
1
(
2
n
-
1
)
(
2
n
+
1
)
1
2
1
2
n
-
1
1
2
n
+
1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/14 6:30:1組卷:809引用:10難度:0.3
相似題
-
1.(1)計(jì)算:1-2+3-4+5-6…+99-100;
(2)計(jì)算:2-4-6+8+10-12-14+16+18-20-22+24+…+2010-2012.發(fā)布:2025/6/25 7:30:2組卷:46引用:1難度:0.6 -
2.在求1+2+22+23+24+25+26的值時(shí),小明發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②-①得2S-S=27-1,S=27-1,即1+2+22+23+24+25+26=27-1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2016(a≠0且a≠1)的值.發(fā)布:2025/6/25 7:30:2組卷:106引用:2難度:0.3 -
3.下列排列的每一列數(shù),研究它的排列有什么規(guī)律?并填出空格上的數(shù).
(1)1,-2,1,-2,1,-2,,,,…
(2)-2,4,-6,8,-10,,,…
(3)1,0,-1,1,0,-1,,,.發(fā)布:2025/6/25 7:30:2組卷:49引用:2難度:0.3