(1)問(wèn)題發(fā)現(xiàn):如圖1,矩形AEFG與矩形ABCD相似,且矩形AEFG的兩邊分別在矩形ABCD的邊AB和AD上BC:AB=1:3,連接CF.線(xiàn)段CF與DG的數(shù)量關(guān)系為 CF=2GDCF=2GD;
(2)拓展探究:如圖2,將矩形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),其它條件不變.在旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖2進(jìn)行說(shuō)理.
(3)解決問(wèn)題:當(dāng)矩形ABCD的邊AD=AB時(shí),點(diǎn)E為直線(xiàn)CD上異于D,C的一點(diǎn),以AE為邊作正方形AEFG,點(diǎn)H為正方形AEFG的中心,連接DH,若AD=4,DE=2,直接寫(xiě)出DH的長(zhǎng).
BC
:
AB
=
1
:
3
【考點(diǎn)】相似形綜合題.
【答案】CF=2GD
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/13 1:0:1組卷:541引用:2難度:0.5
相似題
-
1.已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中點(diǎn),P是腰AB上一動(dòng)點(diǎn),連接PE并延長(zhǎng),交射線(xiàn)CD于點(diǎn)M,作EF⊥PE,交下底BC于點(diǎn)F,連接MF交AD于點(diǎn)N,連接PF,AB=AD=4,BC=6,點(diǎn)A、P之間的距離為x,△PEF的面積為y.
(1)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),求x的值;
(2)求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(3)當(dāng)∠CMF=∠PFE時(shí),求△PEF的面積.發(fā)布:2025/1/28 8:0:2組卷:240引用:1難度:0.5 -
2.【閱讀】“關(guān)聯(lián)”是解決數(shù)學(xué)問(wèn)題的重要思維方式,角平分線(xiàn)的有關(guān)聯(lián)想就有很多……
(1)【問(wèn)題提出】如圖①,PC是△PAB的角平分線(xiàn),求證.PAPB=ACBC小明思路:關(guān)聯(lián)“平行線(xiàn)、等腰三角形”,過(guò)點(diǎn)B作BD∥PA,交PC的延長(zhǎng)線(xiàn)于點(diǎn)D,利用“三角形相似”.
小紅思路:關(guān)聯(lián)“角平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等”,過(guò)點(diǎn)C分別作CD⊥PA交PA于點(diǎn)D,作CE⊥PB交PB于點(diǎn)E,利用“等面積法”.
(2)【理解應(yīng)用】填空:如圖②,Rt△ABC中,∠B=90°,BC=3,AB=4,CD平分∠ACB交AB于點(diǎn)D,則BD長(zhǎng)度為 ;
(3)【深度思考】如圖③,在Rt△ABC中,∠BAC=90°,D是邊BC上一點(diǎn),連接AD,將△ACD沿AD所在直線(xiàn)折疊點(diǎn)C恰好落在邊AB上的E點(diǎn)處.若AC=1,AB=2,則DE的長(zhǎng)為 ;
(4)【拓展升華】如圖④,△ABC中,AB=6,AC=4,AD為∠BAC的角平分線(xiàn),AD的垂直平分線(xiàn)EF交BC延長(zhǎng)線(xiàn)于F,連接AF,當(dāng)BD=3時(shí),AF的長(zhǎng)為 .發(fā)布:2025/1/28 8:0:2組卷:312引用:1難度:0.1 -
3.【感知】如圖①,在Rt△ABC中,∠ACB=90°,D、E分別是邊AC、BC的中點(diǎn),連接DE.則△CDE與△CAB的面積比為.
【探究】將圖①的△CDE繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)一定角度,使點(diǎn)E落在△ABC內(nèi)部,連接AD、BE,并延長(zhǎng)BE分別交AC、AD于點(diǎn)O、F,其它條件不變,如圖②.
(1)求證:△ACD∽△BCE.
(2)求證:AD⊥BF.
【應(yīng)用】將圖②的△CDE繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D恰好落在邊BC的延長(zhǎng)線(xiàn)上,連接AD、BE,BE的延長(zhǎng)線(xiàn)交AD于點(diǎn)F,其它條件不變,如圖③,若AC=4,BC=3,則BF的長(zhǎng)為.發(fā)布:2025/1/28 8:0:2組卷:300引用:1難度:0.1