南宋數(shù)學家秦九韶提出了“三斜求積術”,即已知三角形三邊長求三角形面積的公式:設三角形的三條邊長分別為a、b、c,則面積S可由公式S=p(p-a)(p-b)(p-c)求得,其中p為三角形周長的一半,這個公式也被稱為海倫一秦九韶公式.現(xiàn)有一個三角形的邊長滿足a=4,b+c=6,則此三角形面積的最大值為( ?。?/h1>
p
(
p
-
a
)
(
p
-
b
)
(
p
-
c
)
【考點】三角形的面積公式.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:79引用:10難度:0.7
相似題
-
1.中國南宋大數(shù)學家提出了“三斜求積術”,即已知三角形三邊長求三角形面積的公式:設三角形的三條邊長分別為a,b,c,則三角形的面積S可由公式S=
求得,其中p為三角形周長的一半,這個公式也被稱為海倫一秦九韶公式,現(xiàn)有一個三角形的邊長滿足a=6,b+c=8,則此三角形面積的最大值為( ?。?/h2>p(p-a)(p-b)(p-c)發(fā)布:2024/9/26 7:0:1組卷:125引用:12難度:0.7 -
2.中國南宋大數(shù)學家秦九韶提出了“三斜求積術”,即已知三角形三邊長求三角形面積的公式:設三角形的三條邊長分別為a、b、c,則三角形的面積S可由公式
求得,其中p為三角形周長的一半,這個公式也被稱為海倫?秦九韶公式,現(xiàn)有一個三角形的邊長a、b、c滿足a=3,b+c=5,則此三角形面積的最大值為( ?。?/h2>S=p(p-a)(p-b)(p-c)發(fā)布:2024/10/18 7:0:2組卷:5引用:1難度:0.7 -
3.如圖,已知點A(2,3),B(4,1),△ABC是以AB為底邊的等腰三角形,點C在直線l:x-2y+2=0上.
(Ⅰ)求AB邊上的高CE所在直線的方程;
(Ⅱ)求△ABC的面積.發(fā)布:2024/9/20 19:0:9組卷:1018引用:20難度:0.5
把好題分享給你的好友吧~~