試卷征集
加入會(huì)員
操作視頻

南宋數(shù)學(xué)家秦九韶在《數(shù)書九章》中提出“三斜求積術(shù)”,即以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約之,為實(shí);一為從隅,開平方得積可用公式
S
=
1
4
[
c
2
a
2
-
c
2
+
a
2
-
b
2
2
2
]
(其中a,b,c,S為三角形的三邊和面積)表示,在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a=3,且
csin
C
sin
B
+
b
co
s
2
C
=
3
c
,則△ABC面積的最大值為
9
3
4
9
3
4

【考點(diǎn)】三角形的面積公式
【答案】
9
3
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:15引用:2難度:0.6
相似題
  • 1.中國(guó)南宋大數(shù)學(xué)家提出了“三斜求積術(shù)”,即已知三角形三邊長(zhǎng)求三角形面積的公式:設(shè)三角形的三條邊長(zhǎng)分別為a,b,c,則三角形的面積S可由公式S=
    p
    p
    -
    a
    p
    -
    b
    p
    -
    c
    求得,其中p為三角形周長(zhǎng)的一半,這個(gè)公式也被稱為海倫一秦九韶公式,現(xiàn)有一個(gè)三角形的邊長(zhǎng)滿足a=6,b+c=8,則此三角形面積的最大值為(  )

    發(fā)布:2024/9/26 7:0:1組卷:125引用:12難度:0.7
  • 2.凸四邊形PABQ中,其中A、B為定點(diǎn),AB=
    3
    ,P、Q為動(dòng)點(diǎn),滿足AP=PQ=QB=1.
    (1)寫出cosA與cosQ的關(guān)系式;
    (2)設(shè)△APB和△PQB的面積分別為S和T,求S2+T2的最大值,以及此時(shí)凸四邊形PABQ的面積.

    發(fā)布:2024/11/11 8:0:1組卷:121引用:4難度:0.5
  • 3.中國(guó)南宋大數(shù)學(xué)家秦九韶提出了“三斜求積術(shù)”,即已知三角形三邊長(zhǎng)求三角形面積的公式:設(shè)三角形的三條邊長(zhǎng)分別為a、b、c,則三角形的面積S可由公式
    S
    =
    p
    p
    -
    a
    p
    -
    b
    p
    -
    c
    求得,其中p為三角形周長(zhǎng)的一半,這個(gè)公式也被稱為海倫?秦九韶公式,現(xiàn)有一個(gè)三角形的邊長(zhǎng)a、b、c滿足a=3,b+c=5,則此三角形面積的最大值為( ?。?/h2>

    發(fā)布:2024/10/18 7:0:2組卷:7引用:1難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營(yíng)許可證出版物經(jīng)營(yíng)許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正