如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論:
①abc>0;②9a+3b+c<0;③c>-1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個根為-1a
其中正確的結(jié)論個數(shù)有( )
1
a
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/17 17:0:2組卷:957引用:19難度:0.7
相似題
-
1.對于y=ax2(a≠0)的圖象,下列敘述正確的是( ?。?/h2>
發(fā)布:2025/6/22 9:30:1組卷:183引用:3難度:0.9 -
2.如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論:
①a-b+c>0;
②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( ?。?/h2>發(fā)布:2025/6/22 4:30:1組卷:7829引用:52難度:0.7 -
3.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,下列結(jié)論中:
①abc<0;②9a-3b+c<0;③b2-4ac>0;④a>b,
正確的結(jié)論是(只填序號).發(fā)布:2025/6/22 5:30:2組卷:2808引用:19難度:0.7