課外興趣小組活動時,老師提出了如下問題:
如圖①,△ABC中,若AB=12,AC=6,求BC邊上的中線AD的取值范圍.
小明在組內經(jīng)過合作交流,得到了如下的解決方法:延長AD至點E,使DE=AD,連接BE.由此可證△ADC≌△EDB,從而得到BE=AC=6,再根據(jù)△ABE三邊關系得出AD取值范圍.

(1)小明解題過程中證出△ADC≌△EDB的依據(jù)是 AA;
A.SAS
B.SSS
C.AAS
D.HL
請參考小明的解題思路回答以下問題:
(2)如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=4,EC=3,求線段BF的長.
【答案】A
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/14 8:0:9組卷:712引用:3難度:0.4
相似題
-
1.在△ABC中,高AD和BE所在的直線交于點H,且BH=AC,則∠ABC等于( )
發(fā)布:2025/6/25 5:30:3組卷:3235引用:5難度:0.3 -
2.復習“全等三角形”的知識時,老師布置了一道作業(yè)題:“如圖①,已知在△ABC中,AB=AC,P是△ABC內部任意一點,將AP繞A順時針旋轉至AQ,使得∠QAP=∠BAC,連接BQ、CP,則BQ=CP.”
(1)小亮是個愛動腦筋的同學,他通過對圖①的分析,證明了△ABQ≌△ACP,從而證得BQ=CP.請你幫小亮完成證明.
(2)之后,小亮又將點P移到等腰三角形ABC之外,原題中的條件不變,“BQ=CP”仍然成立嗎?若成立,請你就圖②給出證明.若不成立,請說明理由.發(fā)布:2025/6/25 8:0:1組卷:215引用:5難度:0.5 -
3.已知:如圖,在Rt△ABC中,∠C=90°,∠A=30°,分別以AB、AC為邊在△ABC的外側作等邊△ABE和等邊△ACD,DE與AB交于F,
求證:EF=FD.發(fā)布:2025/6/25 8:0:1組卷:297引用:2難度:0.5