已知AB是⊙O的直徑,C是⊙O上一點,連接AC,過點C作CD⊥AB于點D.
(1)當(dāng)點E為DB上任意一點(點D、B除外)時,連接CE并延長交⊙O于點F,AF與CD的延長線交于點G(如圖①).
求證:AC2=AG?AF.
(2)李明證明(1)的結(jié)論后,又作了以下探究:當(dāng)點E為AD上任意一點(點A、D除外)時,連接CE并延長交⊙O于點F,連接AF并延長與CD的延長線在圓外交于點G,CG與⊙O相交于點H(如圖②).連接FH后,他驚奇地發(fā)現(xiàn)∠GFH=∠AFC.根據(jù)這一條件,可證GF?GA=GH?GC.請你幫李明給出證明.
(3)當(dāng)點E為AB的延長線上或反向延長線上任意一點(點A、B除外)時,如圖③、④所示,還有許多結(jié)論成立.請你根據(jù)圖③或圖④再寫出兩個類似問題(1)、(2)的結(jié)論(兩角、兩弧、兩線段相等或不相等的關(guān)系除外)(不要求證明).
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/12 6:30:2組卷:262引用:2難度:0.1
相似題
-
1.如圖,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=4,BD=2,則BC=.
發(fā)布:2025/6/25 8:0:1組卷:282引用:6難度:0.7 -
2.如圖,四邊形ABCD中,AC⊥BD交BD于點E,點F,M分別是AB,BC的中點,BN平分∠ABE交AM于點N,AB=AC=BD.連接MF,NF.試說明:
(1)∠MBN=45°;
(2)△MFN∽△BDC.發(fā)布:2025/6/25 8:0:1組卷:101引用:1難度:0.3 -
3.某數(shù)學(xué)興趣小組開展了一次活動,過程如下:
設(shè)∠BAC=θ(0°<θ<90°)小棒依次擺放在兩射線之間,并使小棒兩端分別落在兩射線上.
活動一:
如圖甲所示,從點A1開始,依次向右擺放小棒,使小棒與小棒在端點處互相垂直,A1A2為第1根小棒.
數(shù)學(xué)思考:
(1)小棒能無限擺下去嗎?答:.(填“能“或“不能”)
(2)設(shè)AA1=A1A2=A2A3=1.
①θ=度;
②若記小棒A2n-1A2n的長度為an(n為正整數(shù),如A1A2=a1,A3A4=a2,…),求出此時a2,a3的值,并直接寫出an(用含n的式子表示).
活動二:
如圖乙所示,從點A1開始,用等長的小棒依次向右擺放,其中A1A2為第1根小棒,且A1A2=AA1.
數(shù)學(xué)思考:
(3)若已經(jīng)向右擺放了3根小棒,則θ1=,θ2=,θ3=(用含θ的式子表示);
(4)若只能擺放4根小棒,求θ的范圍.發(fā)布:2025/6/25 8:0:1組卷:549引用:5難度:0.5