某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族S中的成員僅以自駕或公交方式通勤.分析顯示:當S中x%(0<x<100)的成員自駕時,自駕群體的人均通勤時間為
f(x)=30,0<x≤30 2x+1800x-90,30<x<100
(單位:分鐘),而公交群體的人均通勤時間不受x影響,恒為40分鐘,試根據上述分析結果回答下列問題:
(1)當x在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族S的人均通勤時間g(x)的表達式;討論g(x)的單調性,并說明其實際意義.
30 , 0 < x ≤ 30 |
2 x + 1800 x - 90 , 30 < x < 100 |
【考點】分段函數的應用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1603引用:26難度:0.5
相似題
-
1.對于函數y=f(x),若存在x0,使f(x0)=-f(-x0),則點(x0,f(x0))與點(-x0,-f(x0))均稱為函數f(x)的“積分點”.已知函數f(x)=
,若點(2,f(2))為函數y=f(x)一個“積分點”則a=;若函數f(x)存在5個“積分點”,則實數a的取值范圍為.16-ax,x>06x-x3,x≤0發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.5 -
2.已知函數
.f(x)=|x|,x≤22x-2,x>2
(1)在平面直角坐標系中,畫出函數f(x)的簡圖,并寫出f(x)的單調區(qū)間和值域;
(2)若f(t)≤6,求實數t的取值范圍.發(fā)布:2024/12/29 7:30:2組卷:38引用:2難度:0.7 -
3.已知函數f(x)=
,若f(x1)=f(x2),且x1≠x2,則|x1-x2|的最大值為.-x-1,x≤0-x2+2x,x>0發(fā)布:2024/12/29 3:0:1組卷:120引用:4難度:0.4
把好題分享給你的好友吧~~