試卷征集
加入會員
操作視頻

已知拋物線C:x2=2py(p>0)的焦點為F,點A(2,y0)在C上,|AF|=2.
(1)求p;
(2)過F作兩條互相垂直的直線l1,l2,l1與C交于M,N兩點,l2與直線y=-1交于點P,判斷∠PMN+∠PNM是否為定值?若是,求出其值;若不是,說明理由.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:294引用:4難度:0.5
相似題
  • 1.已知拋物線C:y2=4x的頂點為O,過點(2,0)的直線交C于A,B兩點.
    (1)判斷
    OA
    ?
    OB
    是否為定值,并說明理由;
    (2)設直線OA,OB分別與直線l:y=x+1交于點D,E,求|DE|的最小值.

    發(fā)布:2024/9/27 19:0:1組卷:56引用:2難度:0.5
  • 2.已知焦點為F的拋物線C:y2=2px(p>0)經過圓D:(x-4)2+(y-4)2=r2(r>0)的圓心,點E是拋物線C與圓D在第一象限的一個公共點,且|EF|=2.
    (1)分別求p與r的值;
    (2)點M與點E關于原點O對稱,點A,B是異于點O的拋物線C上的兩點,且M,A,B三點共線,直線EA,EB分別與x軸交于點P,Q,問:|PF|?|QF|是否為定值?若為定值,求出該定值;若不為定值,試說明理由.

    發(fā)布:2024/9/26 16:0:1組卷:183引用:3難度:0.5
  • 3.已知拋物線C:y2=2px(p>0)過點(1,p),直線l與該拋物線C相交于M,N兩點,過點M作x軸的垂線,與直線y=-x交于點G,點M關于點G的對稱點為P,且O,N,P三點共線.
    (1)求拋物線C的方程;
    (2)若過點Q(2,0)作QH⊥l,垂足為H(不與點Q重合),是否存在定點T,使得|HT|為定值?若存在,求出該定點和該定值;若不存在,請說明理由.

    發(fā)布:2024/9/23 15:0:8組卷:86引用:4難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據(jù),本網將在三個工作日內改正