(1)問題發(fā)現(xiàn):
如圖1,在正方形ABCD中,點E,F(xiàn),G,H分別在邊AB,CD,AD,BC上,且EF⊥GH,則EFGH=11;
(2)類比探究:
如圖2,在(1)的條件下,把“正方形ABCD”改為“矩形ABCD,且AB=m,BC=n”其它條件不變,則EFGH=nmnm,證明你的結(jié)論;
(3)拓展應用:
如圖3,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D為AC的中點,連接BD,點E為AB上一點,CE⊥BD,則CE=241317241317.

EF
GH
EF
GH
n
m
n
m
24
13
17
24
13
17
【考點】相似形綜合題.
【答案】1;;
n
m
24
13
17
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1030引用:6難度:0.3
相似題
-
1.如圖,已知直線l1∥l2,線段AB在直線l1上,BC垂直于l1交l2于點C,且AB=BC,P是線段BC上異于兩端點的一點,過點P的直線分別交l2、l1于點D、E(點A、E位于點B的兩側(cè)),滿足BP=BE,連接AP、CE.
(1)求證:△ABP≌△CBE;
(2)連接AD、BD,BD與AP相交于點F.如圖2.
①當=2時,求證:AP⊥BD;BCBP
②當=n(n>1)時,設△PAD的面積為S1,△PCE的面積為S2,求BCBP的值.S1S2發(fā)布:2025/6/18 11:30:2組卷:1185引用:6難度:0.3 -
2.在矩形ABCD中,AD=3,CD=4,點E在邊CD上,且DE=1.
感知:如圖①,連接AE,過點E作EF⊥AE,交BC于點F,連接AF,易證:△ADE≌△ECF(不需要證明);
探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE∽△ECF;
應用:如圖③,若EF交AB邊于點F,其他條件不變,且△PEF的面積是3,則AP的長為發(fā)布:2025/6/16 19:30:1組卷:681引用:3難度:0.1 -
3.如圖,AD、BE是△ABC的兩條高,過點D作DF⊥AB,垂足為F,F(xiàn)D交BE于M,F(xiàn)D、AC的延長線交于點N.
(1)求證:△BFM∽△NFA;
(2)試探究線段FM、DF、FN之間的數(shù)量關系,并證明你的結(jié)論;
(3)若AC=BC,DN=12,ME:EN=1:2,求線段AC的長.發(fā)布:2025/6/16 11:30:2組卷:851引用:7難度:0.3