試卷征集
加入會員
操作視頻

(1)問題提出:已知任意三角形的兩邊及夾角,求三角形的面積.
問題探究:為了解決上述問題,我們先由特殊到一般來進行探究.
探究一:如圖1,在△ABC中,∠ABC=90°,AC=b,BC=a,∠C=∠α,求△ABC的面積.
在Rt△ABC中,∠ABC=90°,
∴sinα=
AB
AC

∴AB=b?sinα.
∴S△ABC=
1
2
BC?AB=
1
2
a?bsinα.
探究二:如圖2,△ABC中,AB=AC=b,BC=a,∠B=∠α,求△ABC的面積(用含a、b、α代數(shù)式表示),寫出探究過程.
探究三:如圖3,△ABC中,AB=b,BC=a,∠B=∠α,求△ABC的面積(用a、b、α表示)寫出探究過程.
問題解決:已知任意三角形的兩邊及夾角,求三角形的面積方法是:
一個三角形兩邊及其夾角的正弦值的積的一半
一個三角形兩邊及其夾角的正弦值的積的一半
(用文字敘述).
問題應(yīng)用:如圖4,已知平行四邊形ABCD中,AB=b,BC=a,∠B=α,求平行四邊形ABCD的面積(用a、b、α表示)寫出解題過程.
問題拓廣:如圖5所示,利用你所探究的結(jié)論直接寫出任意四邊形的面積(用a、b、c、d、α、β表示),其中AB=b,BC=c,CD=d,AD=a,∠A=α,∠C=β.
菁優(yōu)網(wǎng)

【考點】四邊形綜合題
【答案】一個三角形兩邊及其夾角的正弦值的積的一半
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:228引用:3難度:0.4
相似題
  • 1.如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
    (1)如圖a,求證:△BCP≌△DCQ;
    (2)如圖,延長BP交直線DQ于點E.
    ①如圖b,求證:BE⊥DQ;
    ②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/12/23 18:0:1組卷:2030引用:13難度:0.1
  • 菁優(yōu)網(wǎng)2.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
    2
    AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是
    .(填序號)

    發(fā)布:2024/12/23 18:30:1組卷:1464引用:7難度:0.3
  • 3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
    (1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
    (2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
    (3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4
    5
    ,AB=4,則CE=
    .(直接寫出結(jié)果)
    菁優(yōu)網(wǎng)

    發(fā)布:2024/12/23 18:30:1組卷:1404引用:10難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正