平面α內(nèi)有五點A,B,C,D,E,其中無三點共線,O為空間一點,滿足OA=12OB+xOC+yOD,OB=2xOC+13OD+yOE,則x+3y等于( ?。?/h1>
OA
1
2
OB
OC
OD
OB
OC
1
3
OD
OE
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/24 9:3:20組卷:258引用:6難度:0.6
相似題
-
1.對于非零空間向量
,a,b,現(xiàn)給出下列命題,其中為真命題的是( ?。?/h2>c發(fā)布:2024/12/29 11:0:2組卷:432引用:6難度:0.7 -
2.
是空間的一組基底,則可以與向量{a,b,c}構(gòu)成基底的向量( ?。?/h2>p=a+b,q=a+2b發(fā)布:2024/12/16 11:30:2組卷:148引用:2難度:0.7 -
3.已知空間四邊形ABCO中,
,OA=a,OB=b,點N在BC上,且CN=2NB,M為OA中點,則OC=c等于( ?。?/h2>MN發(fā)布:2024/12/29 3:30:1組卷:91引用:4難度:0.7
相關(guān)試卷